
SAND2010-2184
Unlimited Release

December 2009
Updated May 7, 2010

DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty

Quantification, and Sensitivity Analysis

Version 5.0 Reference Manual

Brian M. Adams, Keith R. Dalbey, Michael S. Eldred, David M. Gay, Laura P. Swiler
Optimization and Uncertainty Quantification Department

William J. Bohnhoff
Radiation Transport Department

John P. Eddy
System Readiness and Sustainment Technologies Department

Karen Haskell
Scientific Applications and User Support Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

Patricia D. Hough
Informatics and Decision Sciences Department

Sandia National Laboratories
P.O. Box 969

Livermore, CA 94551

4

Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and
extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for
optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability,
and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitiv-
ity/variance analysis with design of experiments and parameter study methods. These capabilities may be used
on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement
abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flex-
ible and extensible problem-solving environment for design and performance analysis of computational models
on high performance computers.

This report serves as a reference manual for the commands specification for the DAKOTA software, providing
input overviews, option descriptions, and example specifications.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Contents

1 DAKOTA Reference Manual 9

1.1 Overview . 9

1.2 Input Specification Reference . 9

1.3 Additional Resources . 10

2 DAKOTA File Documentation 11

2.1 dakota.input.summary File Reference . 11

3 Introduction 35

3.1 Overview . 35

3.2 NIDR Input Specification File . 35

3.3 Common Specification Mistakes . 37

3.4 Sample dakota.in Files . 37

3.5 Tabular descriptions . 42

4 Strategy Commands 43

4.1 Strategy Description . 43

4.2 Strategy Specification . 44

4.3 Strategy Independent Controls . 45

4.4 Hybrid Minimization Commands . 45

4.5 Multistart Iteration Commands . 48

4.6 Pareto Set Optimization Commands . 48

4.7 Single Method Commands . 48

5 Method Commands 51

5.1 Method Description . 51

5.2 Method Specification . 52

6 CONTENTS

5.3 Method Independent Controls . 53

5.4 Optimization Methods . 60

5.5 Least Squares Methods . 91

5.6 Surrogate-Based Minimization Methods . 95

5.7 Uncertainty Quantification Methods . 100

5.8 Design of Computer Experiments Methods . 117

5.9 Parameter Study Methods . 124

6 Model Commands 129

6.1 Model Description . 129

6.2 Model Specification . 130

6.3 Model Independent Controls . 130

6.4 Single Model Controls . 131

6.5 Surrogate Model Controls . 131

6.6 Nested Model Controls . 137

7 Variables Commands 141

7.1 Variables Description . 141

7.2 Variables Specification . 143

7.3 Variables Set Identifier . 144

7.4 Design Variables . 145

7.5 Aleatory Uncertain Variables . 147

7.6 Epistemic Uncertain Variables . 163

7.7 State Variables . 163

8 Interface Commands 167

8.1 Interface Description . 167

8.2 Interface Specification . 168

8.3 Interface Independent Controls . 168

8.4 Algebraic mappings . 170

8.5 Simulation interfaces . 171

9 Responses Commands 177

9.1 Responses Description . 177

9.2 Responses Specification . 178

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

CONTENTS 7

9.3 Responses Set Identifier . 179

9.4 Response Labels . 180

9.5 Function Specification . 180

9.6 Gradient Specification . 185

9.7 Hessian Specification . 188

10 Bibliography 191

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

8 CONTENTS

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 1

DAKOTA Reference Manual

Author:

Brian M. Adams, William J. Bohnhoff, Keith R. Dalbey, John P. Eddy, Michael S. Eldred, David M. Gay,
Karen Haskell, Patricia D. Hough, Laura P. Swiler

1.1 Overview

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible,
extensible interface between analysis codes and iteration methods. DAKOTA contains algorithms for optimiza-
tion with gradient and nongradient-based methods, uncertainty quantification with sampling, reliability, stochastic
expansion, and interval estimation methods, parameter estimation with nonlinear least squares methods, and sen-
sitivity/variance analysis with design of experiments and parameter study capabilities. These capabilities may
be used on their own or as components within advanced algorithms such as surrogate-based optimization, mixed
integer nonlinear programming, mixed aleatory-epistemic uncertainty quantification, or optimization under un-
certainty. By employing object-oriented design to implement abstractions of the key components required for
iterative systems analyses, the DAKOTA toolkit provides a flexible problem-solving environment as well as a
platform for rapid prototyping of new solution approaches.

The Reference Manual focuses on documentation of the various input commands for the DAKOTA system. It
follows closely the structure of dakota.input.summary, the master input specification summary. For information
on software structure, refer to the Developers Manual, and for a tour of DAKOTA features and capabilities,
refer to the Users Manual [Adams et al., 2010].

1.2 Input Specification Reference

In the DAKOTA system, the strategy creates and manages iterators and models. A model contains a set of
variables, an interface, and a set of responses, and the iterator operates on the model to map the variables into
responses using the interface. In a DAKOTA input file, the user specifies these components through strategy,
method, model, variables, interface, and responses keyword specifications. The Reference Manual closely follows
this structure, with introductory material followed by detailed documentation of the strategy, method, model,
variables, interface, and responses keyword specifications:

file:../html-dev/index.html

10 DAKOTA Reference Manual

Introduction

Strategy Commands

Method Commands

Model Commands

Variables Commands

Interface Commands

Responses Commands

1.3 Additional Resources

A bibliography for the Reference Manual is provided in:

Bibliography

Project web pages are maintained at http://www.cs.sandia.gov/dakota with documentation pointers
provided at http://www.cs.sandia.gov/dakota/documentation.html and a list of publications
provided at http://www.cs.sandia.gov/dakota/publications.html

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://www.cs.sandia.gov/dakota
http://www.cs.sandia.gov/dakota/documentation.html
http://www.cs.sandia.gov/dakota/publications.html

Chapter 2

DAKOTA File Documentation

2.1 dakota.input.summary File Reference

File containing the input specification for DAKOTA.

2.1.1 Detailed Description

File containing the input specification for DAKOTA.

This file is derived automatically from dakota.input.nspec, which is used in the generation of parser system files
that are compiled into the DAKOTA executable. Therefore, these files are the definitive source for input syntax,
capability options, and associated data inputs. Refer to Instructions for Modifying DAKOTA’s Input Specifi-
cation for information on how to modify the input specification and propagate the changes through the parsing
system.

Key features of the input specification and the associated user input files include:

• In the input specification, required individual specifications simply appear, optional individual and group
specifications are enclosed in [], required group specifications are enclosed in (), and either-or relationships
are denoted by the | symbol. These symbols only appear in dakota.input.nspec; they must not appear in
actual user input files.

• Keyword specifications (i.e., strategy, method, model, variables, interface, and
responses) begin with the keyword possibly preceded by white space (blanks, tabs, and newlines) both
in the input specifications and in user input files. For readability, keyword specifications may be spread
across several lines. Earlier versions of DAKOTA (prior to 4.1) required a backslash character (\) at the
ends of intermediate lines of a keyword. While such backslashes are still accepted, they are no longer
required.

• Some of the keyword components within the input specification indicate that the user must supply
INTEGER, REAL, STRING, INTEGERLIST, REALLIST, or STRINGLIST data as part of the specifi-
cation. In a user input file, the "=" is optional, data in a LIST can be separated by commas or whitespace,
and the STRING data are enclosed in single or double quotes (e.g., ’text_book’ or "text_book").

12 DAKOTA File Documentation

• In user input files, input is largely order-independent (except for entries in lists of data), case insensitive,
and white-space insensitive. Although the order of input shown in the Sample dakota.in Files generally
follows the order of options in the input specification, this is not required.

• In user input files, specifications may be abbreviated so long as the abbreviation is unique. For example,
the npsol_sqp specification within the method keyword could be abbreviated as npsol, but dot_sqp
should not be abbreviated as dot since this would be ambiguous with other DOT method specifications.

• In both the input specification and user input files, comments are preceded by #.

The dakota.input.summary file for DAKOTA V5.0 is:

KEYWORD01 strategy
[graphics]
[tabular_graphics_data

[tabular_graphics_file STRING]
]

[iterator_servers INTEGER]
[iterator_self_scheduling]
[iterator_static_scheduling]
(hybrid

(sequential ALIAS uncoupled
[num_solutions_transferred INTEGER]
method_list STRINGLIST
)

|
(embedded ALIAS coupled

global_method_pointer STRING
local_method_pointer STRING
[local_search_probability REAL]
)

|
(collaborative

method_list STRINGLIST
)

)
|
(multi_start

method_pointer STRING
[random_starts INTEGER

[seed INTEGER]
]

[starting_points REALLIST]
)

|
(pareto_set

method_pointer ALIAS opt_method_pointer STRING
[random_weight_sets INTEGER

[seed INTEGER]
]

[weight_sets ALIAS multi_objective_weight_sets REALLIST]
)

|
(single_method

[method_pointer STRING]
)

KEYWORD12 method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 13

[id_method STRING]
[model_pointer STRING]
[output

debug
| verbose
| quiet
| silent
]

[max_iterations INTEGER]
[max_function_evaluations INTEGER]
[speculative]
[convergence_tolerance REAL]
[constraint_tolerance REAL]
[scaling]
(surrogate_based_local

approx_method_name STRING
| approx_method_pointer STRING
[soft_convergence_limit INTEGER]
[truth_surrogate_bypass]
[trust_region

[initial_size REAL]
[minimum_size REAL]
[contract_threshold REAL]
[expand_threshold REAL]
[contraction_factor REAL]
[expansion_factor REAL]
]

[approx_subproblem
original_primary
| single_objective
| augmented_lagrangian_objective
| lagrangian_objective
original_constraints
| linearized_constraints
| no_constraints
]

[merit_function
penalty_merit
| adaptive_penalty_merit
| lagrangian_merit
| augmented_lagrangian_merit
]

[acceptance_logic
tr_ratio
| filter
]

[constraint_relax
homotopy
]

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(dot_frcg

| dot_mmfd

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

14 DAKOTA File Documentation

| dot_bfgs
| dot_slp
| dot_sqp
[optimization_type

minimize
| maximize
]

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(conmin_frcg

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(conmin_mfd

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(dl_solver STRING

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(npsol_sqp

| nlssol_sqp
[verify_level INTEGER]
[function_precision REAL]
[linesearch_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 15

[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(nlpql_sqp

[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(optpp_cg

[max_step REAL]
[gradient_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(optpp_q_newton

| optpp_fd_newton
| optpp_g_newton
| optpp_newton
[search_method

value_based_line_search
| gradient_based_line_search
| trust_region
| tr_pds
]

[merit_function STRING]
[central_path STRING]
[steplength_to_boundary REAL]
[centering_parameter REAL]
[max_step REAL]
[gradient_tolerance REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(optpp_pds

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

16 DAKOTA File Documentation

[search_scheme_size INTEGER]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(asynch_pattern_search ALIAS coliny_apps

[initial_delta REAL]
[contraction_factor REAL]
[threshold_delta REAL]
[solution_target ALIAS solution_accuracy REAL]
[synchronization

blocking
| nonblocking
]

[merit_function
merit_max
| merit_max_smooth
| merit1
| merit1_smooth
| merit2
| merit2_smooth
| merit2_squared
]

[constraint_penalty REAL]
[smoothing_factor REAL]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(coliny_pattern_search

[constant_penalty]
[no_expansion]
[expand_after_success INTEGER]
[pattern_basis

coordinate
| simplex
]

[stochastic]
[total_pattern_size INTEGER]
[exploratory_moves

multi_step
| adaptive_pattern
| basic_pattern
]

[synchronization
blocking
| nonblocking
]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 17

[contraction_factor REAL]
[constraint_penalty REAL]
initial_delta REAL
threshold_delta REAL
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER]
[show_misc_options]
[misc_options STRINGLIST]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(coliny_solis_wets

[contract_after_failure INTEGER]
[no_expansion]
[expand_after_success INTEGER]
[constant_penalty]
[contraction_factor REAL]
[constraint_penalty REAL]
initial_delta REAL
threshold_delta REAL
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER]
[show_misc_options]
[misc_options STRINGLIST]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(coliny_cobyla

initial_delta REAL
threshold_delta REAL
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER]
[show_misc_options]
[misc_options STRINGLIST]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(coliny_direct

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

18 DAKOTA File Documentation

[division
major_dimension
| all_dimensions
]

[global_balance_parameter REAL]
[local_balance_parameter REAL]
[max_boxsize_limit REAL]
[min_boxsize_limit REAL]
[constraint_penalty REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER]
[show_misc_options]
[misc_options STRINGLIST]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(coliny_ea

[population_size INTEGER]
[initialization_type

simple_random
| unique_random
| flat_file STRING
]

[fitness_type
linear_rank
| merit_function
]

[replacement_type
random INTEGER
| chc INTEGER
| elitist INTEGER
[new_solutions_generated INTEGER]
]

[crossover_rate REAL]
[crossover_type

two_point
| blend
| uniform
]

[mutation_rate REAL]
[mutation_type

replace_uniform
|
(offset_normal

| offset_cauchy
| offset_uniform
[mutation_scale REAL]
[mutation_range INTEGER]
)

[non_adaptive]
]

[constraint_penalty REAL]
[solution_target ALIAS solution_accuracy REAL]
[seed INTEGER]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 19

[show_misc_options]
[misc_options STRINGLIST]
[linear_inequality_constraint_matrix REALLIST]
[linear_inequality_lower_bounds REALLIST]
[linear_inequality_upper_bounds REALLIST]
[linear_inequality_scale_types STRINGLIST]
[linear_inequality_scales REALLIST]
[linear_equality_constraint_matrix REALLIST]
[linear_equality_targets REALLIST]
[linear_equality_scale_types STRINGLIST]
[linear_equality_scales REALLIST]
)

|
(nl2sol

[function_precision REAL]
[absolute_conv_tol REAL]
[x_conv_tol REAL]
[singular_conv_tol REAL]
[singular_radius REAL]
[false_conv_tol REAL]
[initial_trust_radius REAL]
[covariance INTEGER]
[regression_diagnostics]
)

|
(nonlinear_cg

[misc_options STRINGLIST]
)

|
(surrogate_based_global

approx_method_name STRING
| approx_method_pointer STRING
[replace_points]
)

|
(efficient_global

[seed INTEGER]
)

|
(moga

[fitness_type
layer_rank
| domination_count
]

[replacement_type
elitist
| roulette_wheel
| unique_roulette_wheel
|
(below_limit REAL

[shrinkage_fraction ALIAS shrinkage_percentage REAL]
)

]
[niching_type

radial REALLIST
| distance REALLIST
]

[convergence_type
metric_tracker
[percent_change REAL]
[num_generations INTEGER >= 0]
]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

20 DAKOTA File Documentation

[postprocessor_type
orthogonal_distance REALLIST
]

[population_size INTEGER]
[log_file STRING]
[print_each_pop]
[initialization_type

simple_random
| unique_random
| flat_file STRING
]

[crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
|
(shuffle_random

[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)

[crossover_rate REAL]
]

[mutation_type
bit_random
| replace_uniform
|
(offset_normal

| offset_cauchy
| offset_uniform
[mutation_scale REAL]
)

[mutation_rate REAL]
]

[seed INTEGER]
)

|
(soga

[fitness_type
merit_function
[constraint_penalty REAL]
]

[replacement_type
elitist
| favor_feasible
| roulette_wheel
| unique_roulette_wheel
]

[convergence_type
(best_fitness_tracker

[percent_change REAL]
[num_generations INTEGER >= 0]
)

|
(average_fitness_tracker

[percent_change REAL]
[num_generations INTEGER >= 0]
)

]
[population_size INTEGER]
[log_file STRING]
[print_each_pop]
[initialization_type

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 21

simple_random
| unique_random
| flat_file STRING
]

[crossover_type
multi_point_binary INTEGER
| multi_point_parameterized_binary INTEGER
| multi_point_real INTEGER
|
(shuffle_random

[num_parents INTEGER > 0]
[num_offspring INTEGER > 0]
)

[crossover_rate REAL]
]

[mutation_type
bit_random
| replace_uniform
|
(offset_normal

| offset_cauchy
| offset_uniform
[mutation_scale REAL]
)

[mutation_rate REAL]
]

[seed INTEGER]
)

|
(nond_polynomial_chaos

[askey
| wiener]
quadrature_order INTEGERLIST
|
(sparse_grid_level INTEGER

[dimension_preference REALLIST]
)

|
(collocation_points INTEGER

| collocation_ratio REAL
[reuse_samples]
expansion_order INTEGERLIST
| expansion_terms INTEGER
)

|
(expansion_samples INTEGER

[incremental_lhs]
expansion_order INTEGERLIST
| expansion_terms INTEGER
)

|
(expansion_import_file STRING

expansion_order INTEGERLIST
| expansion_terms INTEGER
)

[sample_type
lhs
| random
]

[all_variables]
[fixed_seed]
[reliability_levels REALLIST

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

22 DAKOTA File Documentation

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_stoch_collocation

[askey
| wiener]
quadrature_order INTEGERLIST
|
(sparse_grid_level INTEGER

[dimension_preference REALLIST]
)

[sample_type
lhs
| random
]

[all_variables]
[fixed_seed]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 23

]
[rng

mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_sampling

[sample_type
random
| lhs
|
(incremental_lhs

| incremental_random
previous_samples INTEGER
)

]
[variance_based_decomp]
[all_variables]
[fixed_seed]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_importance

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

24 DAKOTA File Documentation

]
[probability_levels REALLIST

[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_global_evidence

[lhs
| ego]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute

probabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_global_interval_est

[lhs
| ego]
[rng

mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

|
(nond_bayes_calib

[rng
mt19937
| rnum2
]

[samples INTEGER]
[seed INTEGER]
)

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 25

|
(dace

grid
| random
| oas
| lhs
| oa_lhs
| box_behnken
| central_composite
[main_effects]
[quality_metrics]
[variance_based_decomp]
[fixed_seed]
[symbols INTEGER]
[samples INTEGER]
[seed INTEGER]
)

|
(fsu_cvt

[latinize]
[quality_metrics]
[variance_based_decomp]
[fixed_seed]
[trial_type

grid
| halton
| random
]

[num_trials INTEGER]
[samples INTEGER]
[seed INTEGER]
)

|
(psuade_moat

[partitions INTEGERLIST]
[samples INTEGER]
[seed INTEGER]
)

|
(ncsu_direct

[solution_target ALIAS solution_accuracy REAL]
[min_boxsize_limit REAL]
[volume_boxsize_limit REAL]
)

|
(nond_local_evidence

[sqp
| nip]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute

probabilities
| gen_reliabilities
]

]
[probability_levels REALLIST

[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

[distribution

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

26 DAKOTA File Documentation

cumulative
| complementary
]

)
|
(nond_local_interval_est

[sqp
| nip]
)

|
(nond_local_reliability

[mpp_search
x_taylor_mean
| u_taylor_mean
| x_taylor_mpp
| u_taylor_mpp
| x_two_point
| u_two_point
| no_approx
[sqp
| nip]
]

[integration
first_order
| second_order
[refinement

import
| adapt_import
| mm_adapt_import
[samples INTEGER]
[seed INTEGER]
]

]
[response_levels REALLIST

[num_response_levels INTEGERLIST]
[compute

probabilities
| reliabilities
| gen_reliabilities
]

]
[reliability_levels REALLIST

[num_reliability_levels INTEGERLIST]
]

[distribution
cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

)
|
(nond_global_reliability

x_gaussian_process
| u_gaussian_process
[all_variables]
[seed INTEGER]
[rng

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 27

mt19937
| rnum2
]

[response_levels REALLIST
[num_response_levels INTEGERLIST]
[compute

probabilities
| gen_reliabilities
]

]
[distribution

cumulative
| complementary
]

[probability_levels REALLIST
[num_probability_levels INTEGERLIST]
]

[gen_reliability_levels REALLIST
[num_gen_reliability_levels INTEGERLIST]
]

)
|
(fsu_quasi_mc

halton
| hammersley
[latinize]
[quality_metrics]
[variance_based_decomp]
[samples INTEGER]
[fixed_sequence]
[sequence_start INTEGERLIST]
[sequence_leap INTEGERLIST]
[prime_base INTEGERLIST]
)

|
(vector_parameter_study

final_point REALLIST
| step_vector REALLIST
num_steps INTEGER
)

|
(list_parameter_study

list_of_points REALLIST
)

|
(centered_parameter_study

step_vector REALLIST
steps_per_variable ALIAS deltas_per_variable INTEGERLIST
)

|
(multidim_parameter_study

partitions INTEGERLIST
)

KEYWORD model
[id_model STRING]
[variables_pointer STRING]
[responses_pointer STRING]
(single

[interface_pointer STRING]
)

|

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

28 DAKOTA File Documentation

(surrogate
[id_surrogates INTEGERLIST]
(global

(gaussian_process
[point_selection]
[trend

constant
| linear
| quadratic
]

)
|
(mars

[max_bases INTEGER]
[interpolation

linear
| cubic
]

)
|
(moving_least_squares

[poly_order INTEGER]
[weight_function INTEGER]
)

|
(neural_network

[nodes INTEGER]
[range REAL]
[random_weight INTEGER]
)

|
(radial_basis

[bases INTEGER]
[max_pts INTEGER]
[min_partition INTEGER]
[max_subsets INTEGER]
)

|
(polynomial

linear
| quadratic
| cubic
)

|
(kriging

[correlations REALLIST]
[conmin_seed REALLIST]
[max_trials INTEGER]
[max_correlations REALLIST]
[min_correlations REALLIST]
)

[dace_method_pointer STRING]
[reuse_samples

all
| region
| none
]

[samples_file STRING]
[use_gradients]
[correction

zeroth_order
| first_order

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 29

| second_order
additive
| multiplicative
| combined
]

[diagnostics STRINGLIST]
)

|
(multipoint

tana
actual_model_pointer STRING
)

|
(local

taylor_series
actual_model_pointer STRING
)

|
(hierarchical

low_fidelity_model_pointer STRING
high_fidelity_model_pointer STRING
(correction

zeroth_order
| first_order
| second_order
additive
| multiplicative
| combined
)

)
)

|
(nested

[optional_interface_pointer STRING
[optional_interface_responses_pointer STRING]
]

(sub_method_pointer STRING
[primary_variable_mapping STRINGLIST]
[secondary_variable_mapping STRINGLIST]
[primary_response_mapping REALLIST]
[secondary_response_mapping REALLIST]
)

)

KEYWORD12 variables
[id_variables STRING]
[continuous_design INTEGER > 0

[initial_point ALIAS cdv_initial_point REALLIST]
[lower_bounds ALIAS cdv_lower_bounds REALLIST]
[upper_bounds ALIAS cdv_upper_bounds REALLIST]
[scale_types ALIAS cdv_scale_types STRINGLIST]
[scales ALIAS cdv_scales REALLIST]
[descriptors ALIAS cdv_descriptors STRINGLIST]
]

[discrete_design_range INTEGER > 0
[initial_point ALIAS ddv_initial_point INTEGERLIST]
[lower_bounds ALIAS ddv_lower_bounds INTEGERLIST]
[upper_bounds ALIAS ddv_upper_bounds INTEGERLIST]
[descriptors ALIAS ddv_descriptors STRINGLIST]
]

[discrete_design_set_integer INTEGER > 0
[initial_point INTEGERLIST]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

30 DAKOTA File Documentation

[num_set_values INTEGERLIST]
set_values INTEGERLIST
[descriptors STRINGLIST]
]

[discrete_design_set_real INTEGER > 0
[initial_point REALLIST]
[num_set_values INTEGERLIST]
set_values REALLIST
[descriptors STRINGLIST]
]

[normal_uncertain INTEGER > 0
means ALIAS nuv_means REALLIST
std_deviations ALIAS nuv_std_deviations REALLIST
[lower_bounds ALIAS nuv_lower_bounds REALLIST]
[upper_bounds ALIAS nuv_upper_bounds REALLIST]
[descriptors ALIAS nuv_descriptors STRINGLIST]
]

[lognormal_uncertain INTEGER > 0
(lambdas ALIAS lnuv_lambdas REALLIST

zetas ALIAS lnuv_zetas REALLIST
)

|
(means ALIAS lnuv_means REALLIST

std_deviations ALIAS lnuv_std_deviations REALLIST
| error_factors ALIAS lnuv_error_factors REALLIST
)

[lower_bounds ALIAS lnuv_lower_bounds REALLIST]
[upper_bounds ALIAS lnuv_upper_bounds REALLIST]
[descriptors ALIAS lnuv_descriptors STRINGLIST]
]

[uniform_uncertain INTEGER > 0
lower_bounds ALIAS uuv_lower_bounds REALLIST
upper_bounds ALIAS uuv_upper_bounds REALLIST
[descriptors ALIAS uuv_descriptors STRINGLIST]
]

[loguniform_uncertain INTEGER > 0
lower_bounds ALIAS luuv_lower_bounds REALLIST
upper_bounds ALIAS luuv_upper_bounds REALLIST
[descriptors ALIAS luuv_descriptors STRINGLIST]
]

[triangular_uncertain INTEGER > 0
modes ALIAS tuv_modes REALLIST
lower_bounds ALIAS tuv_lower_bounds REALLIST
upper_bounds ALIAS tuv_upper_bounds REALLIST
[descriptors ALIAS tuv_descriptors STRINGLIST]
]

[exponential_uncertain INTEGER > 0
betas ALIAS euv_betas REALLIST
[descriptors ALIAS euv_descriptors STRINGLIST]
]

[beta_uncertain INTEGER > 0
alphas ALIAS buv_alphas REALLIST
betas ALIAS buv_betas REALLIST
lower_bounds ALIAS buv_lower_bounds REALLIST
upper_bounds ALIAS buv_upper_bounds REALLIST
[descriptors ALIAS buv_descriptors STRINGLIST]
]

[gamma_uncertain INTEGER > 0
alphas ALIAS gauv_alphas REALLIST
betas ALIAS gauv_betas REALLIST
[descriptors ALIAS gauv_descriptors STRINGLIST]
]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 31

[gumbel_uncertain INTEGER > 0
alphas ALIAS guuv_alphas REALLIST
betas ALIAS guuv_betas REALLIST
[descriptors ALIAS guuv_descriptors STRINGLIST]
]

[frechet_uncertain INTEGER > 0
alphas ALIAS fuv_alphas REALLIST
betas ALIAS fuv_betas REALLIST
[descriptors ALIAS fuv_descriptors STRINGLIST]
]

[weibull_uncertain INTEGER > 0
alphas ALIAS wuv_alphas REALLIST
betas ALIAS wuv_betas REALLIST
[descriptors ALIAS wuv_descriptors STRINGLIST]
]

[histogram_bin_uncertain INTEGER > 0
[num_pairs ALIAS huv_num_bin_pairs INTEGERLIST]
abscissas ALIAS huv_bin_abscissas REALLIST
ordinates ALIAS huv_bin_ordinates REALLIST
| counts ALIAS huv_bin_counts REALLIST
[descriptors ALIAS huv_bin_descriptors STRINGLIST]
]

[poisson_uncertain INTEGER > 0
lambdas REALLIST
[descriptors STRINGLIST]
]

[binomial_uncertain INTEGER > 0
prob_per_trial REALLIST
num_trials INTEGERLIST
[descriptors STRINGLIST]
]

[negative_binomial_uncertain INTEGER > 0
prob_per_trial REALLIST
num_trials INTEGERLIST
[descriptors STRINGLIST]
]

[geometric_uncertain INTEGER > 0
prob_per_trial REALLIST
[descriptors STRINGLIST]
]

[hypergeometric_uncertain INTEGER > 0
total_population INTEGERLIST
selected_population INTEGERLIST
num_drawn INTEGERLIST
[descriptors STRINGLIST]
]

[histogram_point_uncertain INTEGER > 0
[num_pairs ALIAS huv_num_point_pairs INTEGERLIST]
abscissas ALIAS huv_point_abscissas REALLIST
counts ALIAS huv_point_counts REALLIST
[descriptors ALIAS huv_point_descriptors STRINGLIST]
]

[uncertain_correlation_matrix REALLIST]
[interval_uncertain INTEGER > 0

[num_intervals ALIAS iuv_num_intervals INTEGERLIST]
interval_probs ALIAS iuv_interval_probs REALLIST
interval_bounds ALIAS iuv_interval_bounds REALLIST
[descriptors ALIAS iuv_descriptors STRINGLIST]
]

[continuous_state INTEGER > 0
[initial_state ALIAS csv_initial_state REALLIST]
[lower_bounds ALIAS csv_lower_bounds REALLIST]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

32 DAKOTA File Documentation

[upper_bounds ALIAS csv_upper_bounds REALLIST]
[descriptors ALIAS csv_descriptors STRINGLIST]
]

[discrete_state_range INTEGER > 0
[initial_state ALIAS dsv_initial_state INTEGERLIST]
[lower_bounds ALIAS dsv_lower_bounds INTEGERLIST]
[upper_bounds ALIAS dsv_upper_bounds INTEGERLIST]
[descriptors ALIAS dsv_descriptors STRINGLIST]
]

[discrete_state_set_integer INTEGER > 0
[initial_state INTEGERLIST]
[num_set_values INTEGERLIST]
set_values INTEGERLIST
[descriptors STRINGLIST]
]

[discrete_state_set_real INTEGER > 0
[initial_state REALLIST]
[num_set_values INTEGERLIST]
set_values REALLIST
[descriptors STRINGLIST]
]

KEYWORD12 interface
[id_interface STRING]
[algebraic_mappings STRING]
[analysis_drivers STRINGLIST

[analysis_components STRINGLIST]
[input_filter STRING]
[output_filter STRING]
(system

| fork
[parameters_file STRING]
[results_file STRING]
[verbatim]
[aprepro]
[file_tag]
[file_save]
[work_directory

[named STRING]
[directory_tag ALIAS dir_tag]
[directory_save ALIAS dir_save]
[template_directory STRING

| template_files STRINGLIST
[copy]
[replace]
]

]
)

|
(direct

[processors_per_analysis INTEGER]
)

| grid
[failure_capture

abort
| retry INTEGER
| recover REALLIST
| continuation
]

[deactivate
[active_set_vector]
[evaluation_cache]

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

2.1 dakota.input.summary File Reference 33

[restart_file]
]

]
[asynchronous

[evaluation_concurrency INTEGER]
[local_evaluation_self_scheduling
| local_evaluation_static_scheduling]
[analysis_concurrency INTEGER]
]

[evaluation_servers INTEGER]
[evaluation_self_scheduling
| evaluation_static_scheduling]
[analysis_servers INTEGER]
[analysis_self_scheduling
| analysis_static_scheduling]

KEYWORD12 responses
[id_responses STRING]
[descriptors ALIAS response_descriptors STRINGLIST]
(num_objective_functions INTEGER >= 0

[objective_function_scale_types STRINGLIST]
[objective_function_scales REALLIST]
[multi_objective_weights REALLIST]
[num_nonlinear_inequality_constraints INTEGER >= 0

[nonlinear_inequality_lower_bounds REALLIST]
[nonlinear_inequality_upper_bounds REALLIST]
[nonlinear_inequality_scale_types STRINGLIST]
[nonlinear_inequality_scales REALLIST]
]

[num_nonlinear_equality_constraints INTEGER >= 0
[nonlinear_equality_targets REALLIST]
[nonlinear_equality_scale_types STRINGLIST]
[nonlinear_equality_scales REALLIST]
]

)
|
(num_least_squares_terms INTEGER >= 0

[least_squares_data_file STRING]
[least_squares_term_scale_types STRINGLIST]
[least_squares_term_scales REALLIST]
[least_squares_weights REALLIST]
[num_nonlinear_inequality_constraints INTEGER >= 0

[nonlinear_inequality_lower_bounds REALLIST]
[nonlinear_inequality_upper_bounds REALLIST]
[nonlinear_inequality_scale_types STRINGLIST]
[nonlinear_inequality_scales REALLIST]
]

[num_nonlinear_equality_constraints INTEGER >= 0
[nonlinear_equality_targets REALLIST]
[nonlinear_equality_scale_types STRINGLIST]
[nonlinear_equality_scales REALLIST]
]

)
| num_response_functions INTEGER >= 0
no_gradients
| analytic_gradients
|
(mixed_gradients

id_numerical_gradients INTEGERLIST
id_analytic_gradients INTEGERLIST
[method_source]
[(dakota

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

34 DAKOTA File Documentation

[ignore_bounds]
)

| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST := 0.001]
)

|
(numerical_gradients

[method_source]
[(dakota

[ignore_bounds]
)

| vendor]
[interval_type]
[forward
| central]
[fd_step_size ALIAS fd_gradient_step_size REALLIST := 0.001]
)

no_hessians
|
(numerical_hessians

[fd_step_size ALIAS fd_hessian_step_size REALLIST]
[forward
| central]
)

|
(quasi_hessians

(bfgs
[damped]
)

| sr1
)

| analytic_hessians
|
(mixed_hessians

[id_numerical_hessians INTEGERLIST
[fd_step_size ALIAS fd_hessian_step_size REALLIST]
]

[forward
| central]
[id_quasi_hessians INTEGERLIST

(bfgs
[damped]
)

| sr1
]

[id_analytic_hessians INTEGERLIST]
)

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 3

Introduction

3.1 Overview

In the DAKOTA system, a strategy creates and manages iterators and models. A model, generally speaking,
contains a set of variables, an interface, and a set of responses, and the iterator operates on the model to map the
variables into responses using the interface. Each of these six pieces (strategy, method, model, variables, interface,
and responses) are separate specifications in the user’s input file, and as a whole, determine the study to be
performed during an execution of the DAKOTA software. The number of strategies which can be invoked during
a DAKOTA execution is limited to one. This strategy, however, may invoke multiple methods. Furthermore, each
method may have its own model, consisting of (generally speaking) its own set of variables, its own interface, and
its own set of responses. Thus, there may be multiple specifications of the method, model, variables, interface,
and responses sections.

The syntax of DAKOTA specification is governed by the New Input Deck Reader (NIDR) parsing system [Gay,
2008], which uses the dakota.input.nspec file to describe the allowable inputs to the system. A shortened form
of this input specification file, dakota.input.summary, provides a quick reference to the allowable system inputs
from which a particular input file (e.g., dakota.in) can be derived. This automatically derived shortened form
omits implementation details not needed in a quick reference.

This Reference Manual focuses on providing complete details for the allowable specifications in an input file to
the DAKOTA program. Related details on the name and location of the DAKOTA program, command line inputs,
and execution syntax are provided in the Users Manual [Adams et al., 2010].

3.2 NIDR Input Specification File

DAKOTA input is governed by the NIDR input specification file. This file (dakota.input.nspec) is used by a code
generator to create parsing system components that are compiled into the DAKOTA executable (refer to Instruc-
tions for Modifying DAKOTA’s Input Specification for additional information). Therefore, dakota.input.nspec
and its summary, dakota.input.summary, are the definitive source for input syntax, capability options, and op-
tional and required capability sub-parameters. Beginning users may find dakota.input.summary more confusing
than helpful and, in this case, adaptation of example input files to a particular problem may be a more effective ap-
proach. However, advanced users can master all of the various input specification possibilities once the structure
of the input specification file is understood.

36 Introduction

Refer to the dakota.input.summary file for current input specifications. From this file listing, it can be seen that
the main structure of the strategy specification is that of several required group specifications separated by logical
OR’s: either hybrid OR multi-start OR pareto set OR single method. The method keyword is the most lengthy
specification; however, its structure is again relatively simple. The structure is that of a set of optional method-
independent settings followed by a long list of possible methods appearing as required group specifications (con-
taining a variety of method-dependent settings) separated by OR’s. The model keyword reflects a structure of
three required group specifications separated by OR’s. Within the surrogate model type, the type of approxima-
tion must be specified with either a global OR multipoint OR local OR hierarchical required group specification.
The structure of the variables keyword is that of optional group specifications for continuous and discrete design
variables, a number of different uncertain variable distribution types, and continuous and discrete state variables.
Each of these specifications can either appear or not appear as a group. Next, the interface keyword allows the
specification of either algebraic mappings, simulation-based analysis driver mappings, or both. Within the analy-
sis drivers specification, a system OR fork OR direct OR grid group specification must be selected. Finally, within
the responses keyword, the primary structure is the required specification of the function set (either optimization
functions OR least squares functions OR generic response functions), followed by the required specification of
the gradients (either none OR numerical OR analytic OR mixed) and the required specification of the Hessians
(either none OR numerical OR quasi OR analytic OR mixed). Refer to Strategy Commands, Method Commands,
Model Commands, Variables Commands, Interface Commands, and Responses Commands for detailed informa-
tion on the keywords and their various optional and required specifications. And for additional details on NIDR
specification logic and rules, refer to [Gay, 2008].

Some keywords, such as those providing bounds on variables, have an associated list of values. When the same
value should be repeated several times in a row, you can use a notation of the form n∗value instead of repeating
the value n times. For example, in Sample 2: Least Squares below,

lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0

could also be written

lower_bounds 2*-2.0
upper_bounds 2 * 2.0

(with optional spaces around the ∗). Another possible abbreviation is for sequences: L:S:U (with optional spaces
around the :) is expanded to L L+S L+2∗S ... U, and L:U (with no second colon) is treated as L:1:U. For example,
in one of the test examples distributed with DAKOTA (test case 2 of test/dakota_uq_textbook_sop_-
lhs.in),

histogram_point = 2
abscissas = 50. 60. 70. 80. 90.

30. 40. 50. 60. 70.
counts = 10 20 30 20 10

10 20 30 20 10

could also be written

histogram_point = 2
abscissas = 50 : 10 : 90

30 : 10 : 70
counts = 10:10:30 20 10

10:10:30 20 10

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

3.3 Common Specification Mistakes 37

3.3 Common Specification Mistakes

Spelling mistakes and omission of required parameters are the most common errors. Some causes of errors are
more obscure:

• Documentation of new capability sometimes lags the use of new capability in executables, especially exper-
imental VOTD executables from nightly builds. When parsing errors occur that the documentation cannot
explain, reference to the particular input specification used in building the executable, which is installed
alongside the executable, will often resolve the errors.

• If you want to compare results with those obtained using an earlier version of DAKOTA (prior to 4.1), your
input file for the earlier version must use backslashes to indicate continuation lines for DAKOTA keywords.
For example, rather than

Comment about the following "responses" keyword...
responses,

num_objective_functions = 1
Comment within keyword "responses"
analytic_gradients

Another comment within keyword "responses"
no_hessians

you would need to write

Comment about the following "responses" keyword...
responses, \

num_objective_functions = 1 \
Comment within keyword "responses" \
analytic_gradients \

Another comment within keyword "responses" \
no_hessians

with no white space (blanks or tabs) after the \ character.

In most cases, the NIDR system provides error messages that help the user isolate errors in DAKOTA input files.

3.4 Sample dakota.in Files

A DAKOTA input file is a collection of fields from the dakota.input.summary file that describe the problem to be
solved by the DAKOTA system. Several examples follow.

3.4.1 Sample 1: Optimization

The following sample input file shows single-method optimization of the Textbook Example using
DOT’s modified method of feasible directions. A similar file is available in the test directory as
Dakota/examples/tutorial/dakota_textbook.in.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

38 Introduction

strategy,
single_method

method,
DOT performs better, but may not be available

dot_mmfd,
conmin_mfd,

max_iterations = 50,
convergence_tolerance = 1e-4

variables,
continuous_design = 2

initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
direct

analysis_driver = ’text_book’

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
numerical_gradients

method_source dakota
interval_type central
fd_gradient_step_size = 1.e-4

no_hessians

3.4.2 Sample 2: Least Squares

The following sample input file shows a nonlinear least squares solution of the Rosenbrock
Example using the NL2SOL method. A similar file is available in the test directory as
Dakota/examples/tutorial/dakota_rosenbrock_ls.in.

strategy,
single_method

method,
nl2sol

max_iterations = 50
convergence_tolerance = 1e-4

model,
single

variables,
continuous_design = 2

initial_point -1.2 1.0
lower_bounds -2.0 -2.0
upper_bounds 2.0 2.0
descriptor ’x1’ ’x2’

interface,
system

analysis_driver = ’rosenbrock’

responses,

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

3.4 Sample dakota.in Files 39

num_least_squares_terms = 2
analytic_gradients
no_hessians

3.4.3 Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte Carlo sampling using the Textbook Example. A
similar file is available in the test directory as Dakota/test/dakota_uq_textbook_lhs.in.

strategy,
single_method

method,
nond_sampling,

samples = 100 seed = 1
complementary distribution
response_levels = 3.6e+11 4.0e+11 4.4e+11

6.0e+04 6.5e+04 7.0e+04
3.5e+05 4.0e+05 4.5e+05

sample_type lhs

variables,
normal_uncertain = 2

means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = ’TF1n’ ’TF2n’

uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = ’TF1u’ ’TF2u’

weibull_uncertain = 2
alphas = 12., 30.
betas = 250., 590.
descriptors = ’TF1w’ ’TF2w’

histogram_bin_uncertain = 2
num_pairs = 3 4
abscissas = 5 8 10 .1 .2 .3 .4
counts = 17 21 0 12 24 12 0
descriptors = ’TF1h’ ’TF2h’

histogram_point_uncertain = 1
num_pairs = 2
abscissas = 3 4
counts = 1 1
descriptors = ’TF3h’

interface,
system asynch evaluation_concurrency = 5

analysis_driver = ’text_book’

responses,
num_response_functions = 3
no_gradients
no_hessians

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

40 Introduction

3.4.4 Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter study using the Textbook Example. It makes use
of the default strategy and model specifications (single_method and single, respectively). A similar file is
available in the test directory as Dakota/examples/tutorial/dakota_rosenbrock_vector.in.

strategy,
single_method

method,
vector_parameter_study

final_point = 1.1 1.3
num_steps = 10

model,
single

variables,
continuous_design = 2

initial_point -0.3 0.2
descriptors ’x1’ "x2"

interface,
direct

analysis_driver = ’rosenbrock’

responses,
num_objective_functions = 1
no_gradients
no_hessians

3.4.5 Sample 5: Hybrid Strategy

The following sample input file shows a hybrid strategy using three methods. It employs a genetic algorithm,
pattern search, and full Newton gradient-based optimization in succession to solve the Textbook Example. A
similar file is available in the test directory as Dakota/test/dakota_hybrid.in.

strategy,
graphics
hybrid sequential

method_list = ’GA’ ’PS’ ’NLP’

method,
id_method = ’GA’
model_pointer = ’M1’
coliny_ea

seed = 1234
population_size = 10
verbose output

method,
id_method = ’PS’
model_pointer = ’M1’
coliny_pattern_search stochastic

seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

3.4 Sample dakota.in Files 41

exploratory_moves basic_pattern
verbose output

method,
id_method = ’PS2’
model_pointer = ’M1’
max_function_evaluations = 10
coliny_pattern_search stochastic

seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
verbose output

method,
id_method = ’NLP’
model_pointer = ’M2’
optpp_newton

gradient_tolerance = 1.e-12
convergence_tolerance = 1.e-15
verbose output

model,
id_model = ’M1’
single

variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R1’

model,
id_model = ’M2’
single

variables_pointer = ’V1’
interface_pointer = ’I1’
responses_pointer = ’R2’

variables,
id_variables = ’V1’
continuous_design = 2

initial_point 0.6 0.7
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’x1’ ’x2’

interface,
id_interface = ’I1’
direct

analysis_driver= ’text_book’

responses,
id_responses = ’R1’
num_objective_functions = 1
no_gradients
no_hessians

responses,
id_responses = ’R2’
num_objective_functions = 1
analytic_gradients
analytic_hessians

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

42 Introduction

Additional example input files, as well as the corresponding output and graphics, are provided in the Getting
Started chapter of the Users Manual [Adams et al., 2010].

3.5 Tabular descriptions

In the following discussions of keyword specifications, tabular formats (Tables 4.1 through 9.10) are used to
present a short description of the specification, the keyword used in the specification, the type of data associated
with the keyword, the status of the specification (required, optional, required group, or optional group), and the
default for an optional specification.

It can be difficult to capture in a simple tabular format the complex relationships that can occur when specifications
are nested within multiple groupings. For example, in the model keyword, the actual_model_pointer
specification is a required specification within the multipoint and local required group specifications, which
are separated from each other and from other required group specifications (global and hierarchical) by
logical OR’s. The selection between the global, multipoint, local, or hierarchical required groups
is contained within another required group specification (surrogate), which is separated from the single
and nested required group specifications by logical OR’s. Rather than unnecessarily proliferate the number of
tables in attempting to capture all of these inter-relationships, a balance is sought, since some inter-relationships
are more easily discussed in the associated text. The general structure of the following sections is to present the
outermost specification groups first (e.g., single, surrogate, or nested in Table 6.1), followed by lower
levels of group specifications (e.g., global, multipoint, local, or hierarchical surrogates in Table
6.3), followed by the components of each group (e.g., Tables 6.4 through 6.8) in succession.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 4

Strategy Commands

4.1 Strategy Description

The strategy section in a DAKOTA input file specifies the top level technique which will govern the manage-
ment of iterators and models in the solution of the problem of interest. Four strategies currently exist: hybrid,
multi_start, pareto_set, and single_method. These algorithms are implemented within the Strat-
egy "Strategy" class hierarchy in the CollaborativeHybridStrategy, EmbeddedHybridStrategy, Sequential-
HybridStrategy, ConcurrentStrategy, and SingleMethodStrategy classes. For each of the strategies, a brief
algorithm description is given below. Additional information on the algorithm logic is available in the Users
Manual [Adams et al., 2010].

In a hybrid minimization strategy (hybrid), a set of methods is specified which will be used synergistically in
seeking an optimal design. The relationships among the methods are categorized as collaborative, embedded, or
sequential. The goal in each case is to exploit the strengths of different optimization and nonlinear least squares
algorithms through different stages of the minimization process. Global/local hybrids (e.g., genetic algorithms
combined with nonlinear programming) are a common example in which the desire for identification of a global
optimum is balanced with the need for efficient navigation to a local optimum.

In the multi-start iteration strategy (multi_start), a series of iterator runs are performed for different values of
parameters in the model. A common use is for multi-start optimization (i.e., different local optimization runs from
different starting points for the design variables), but the concept and the code are more general. An important
feature is that these iterator runs may be performed concurrently.

In the pareto set optimization strategy (pareto_set), a series of optimization or least squares calibration runs
are performed for different weightings applied to multiple objective functions. This set of optimal solutions
defines a "Pareto set," which is useful for investigating design trade-offs between competing objectives. Again,
these optimizations can be performed concurrently, similar to the multi-start strategy discussed above. The code
is similar enough to the multi_start technique that both strategies are implemented in the same Concurrent-
Strategy class.

Lastly, the single_method strategy is a "fall through" strategy in that it does not provide control over multiple
iterators or multiple models. Rather, it provides the means for simple execution of a single iterator on a single
model.

Each of the strategy specifications identifies one or more method pointers (e.g., method_list, method_-
pointer) to identify the iterators that will be used in the strategy. These method pointers are strings that

44 Strategy Commands

correspond to the id_method identifier strings from the method specifications (see Method Independent Con-
trols). These string identifiers (e.g., ’NLP1’) should not be confused with method selections (e.g., dot_-
mmfd). Each of the method specifications identified in this manner has the responsibility for identifying cor-
responding model specifications (using model_pointer from Method Independent Controls), which in turn
identify the variables, interface, and responses specifications (using variables_pointer, interface_-
pointer, and responses_pointer from Model Commands) that are used to build the model used by the
iterator. If one of these specifications does not provide an optional pointer, then that component will be con-
structed using the last specification parsed. In addition to method pointers, a variety of graphics options (e.g.,
tabular_graphics_data), iterator concurrency controls (e.g., iterator_servers), and strategy data
(e.g., starting_points) can be specified.

Specification of a strategy block in an input file is optional, with single_method being the default strategy.
If no strategy is specified or if single_method is specified without its optional method_pointer specifi-
cation, then the default behavior is to employ the last method, variables, interface, and responses specifications
parsed. This default behavior is most appropriate if only one specification is present for method, variables, inter-
face, and responses, since there is no ambiguity in this case.

Example specifications for each of the strategies follow. A hybrid example is:

strategy,
hybrid sequential

method_list = ’GA’, ’PS’, ’NLP’

A multi_start example specification is:

strategy,
multi_start

method_pointer = ’NLP1’
random_starts = 10

A pareto_set example specification is:

strategy,
pareto_set

method_pointer = ’NLP1’
random_weight_sets = 10

And finally, a single_method example specification is:

strategy,
single_method

method_pointer = ’NLP1’

4.2 Strategy Specification

The strategy specification has the following structure:

strategy,
<strategy independent controls>
<strategy selection>

<strategy dependent controls>

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

4.3 Strategy Independent Controls 45

where <strategy selection> is one of the following: hybrid, multi_start, pareto_set, or
single_method.

The <strategy independent controls> are those controls which are valid for a variety of strate-
gies. Unlike the Method Independent Controls, which can be abstractions with slightly different implementations
from one method to the next, the implementations of each of the strategy independent controls are consistent for
all strategies that use them. The <strategy dependent controls> are those controls which are only
meaningful for a specific strategy. Referring to dakota.input.summary, the strategy independent controls
are those controls defined externally from and prior to the strategy selection blocks. They are all optional. The
strategy selection blocks are all required group specifications separated by logical OR’s (hybrid OR multi_-
start OR pareto_set OR single_method). Thus, one and only one strategy selection must be provided.
The strategy dependent controls are those controls defined within the strategy selection blocks. Defaults for strat-
egy independent and strategy dependent controls are defined in DataStrategy. The following sections provide
additional detail on the strategy independent controls followed by the strategy selections and their corresponding
strategy dependent controls.

4.3 Strategy Independent Controls

The strategy independent controls include graphics, tabular_graphics_data, tabular_-
graphics_file, iterator_servers, iterator_self_scheduling, and iterator_static_-
scheduling. The graphics flag activates a 2D graphics window containing history plots for the variables
and response functions in the study. This window is updated in an event loop with approximately a 2 second
cycle time. For applications utilizing approximations over 2 variables, a 3D graphics window containing a surface
plot of the approximation will also be activated. The tabular_graphics_data flag activates file tabula-
tion of the same variables and response function history data that gets passed to graphics windows with use
of the graphics flag. The tabular_graphics_file specification optionally specifies a name to use
for this file (dakota_tabular.dat is the default). Within the file, the variables and response functions
appear as columns and each function evaluation provides a new table row. This capability is most useful for
post-processing of DAKOTA results with 3rd party graphics tools such as MATLAB, Tecplot, etc. There is no
dependence between the graphics flag and the tabular_graphics_data flag; they may be used inde-
pendently or concurrently. The iterator_servers, iterator_self_scheduling, and iterator_-
static_scheduling specifications provide manual overrides for the number of concurrent iterator partitions
and the scheduling policy for concurrent iterator jobs. These settings are normally determined automatically
in the parallel configuration routines (see ParallelLibrary) but can be overridden with user inputs if desired.
The graphics, tabular_graphics_data, and tabular_graphics_file specifications are valid for
all strategies. However, the iterator_servers, iterator_self_scheduling, and iterator_-
static_scheduling overrides are only useful inputs for those strategies supporting concurrency in iterators,
i.e., multi_start and pareto_set. Table 4.1 summarizes the strategy independent controls.

4.4 Hybrid Minimization Commands

The hybrid minimization strategy has sequential, sequential adaptive, embedded, and
collaborative approaches (see the Users Manual [Adams et al., 2010] for more information on the algo-
rithms employed). In the sequential approaches, best solutions are transferred from one method to the next
through a specified sequence. In the embedded approach, a tightly-coupled hybrid is employed in which a subor-
dinate local method provides periodic refinements to a top-level global method. And in the collaborative approach,
multiple methods work together and share solutions while executing concurrently.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

46 Strategy Commands

Description Keyword Associated Data Status Default
Graphics flag graphics none Optional no graphics
Tabulation of
graphics data

tabular_-
graphics_-
data

none Optional group no data tabulation

File name for
tabular graphics
data

tabular_-
graphics_-
file

string Optional dakota_-
tabular.dat

Number of iterator
servers

iterator_-
servers

integer Optional no override of auto
configure

Self-scheduling of
iterator jobs

iterator_-
self_-
scheduling

none Optional no override of auto
configure

Static scheduling
of iterator jobs

iterator_-
static_-
scheduling

none Optional no override of auto
configure

Table 4.1: Specification detail for strategy independent controls

In the two sequential approaches, a list of method strings supplied with the method_list specification
specifies the identity and sequence of iterators to be used. Any number of iterators may be specified. The
sequential adaptive approach may be specified by turning on the adaptive flag. If this flag in specified, then
progress_threshold must also be specified since it is a required part of adaptive specification. In the
nonadaptive case, method switching is managed through the separate convergence controls of each method. In
the adaptive case, however, method switching occurs when the internal progress metric (normalized between 0.0
and 1.0) falls below the user specified progress_threshold. The number of solutions transferred between
methods is specified by num_solutions_transferred. For example, if one sets up a two-level strategy
with a first method that generates multiple solutions such as a genetic algorithm, followed by a second method that
is initialized only at a single point such as a gradient-based algorithm, it is possible to take the multiple solutions
generated by the first method and create several instances of the second method, each one with a different initial
starting point. The logic governing the transfer of multiple solutions between methods is as follows: if one solution
is returned from method A, then one solution is transferred to method B. If multiple solutions are returned from
method A, and method B can accept multiple solutions as input (for example, as a genetic algorithm population),
then one instance of method B is initialized with multiple solutions. If multiple solutions are returned from
method A but method B only can accept one initial starting point, then method B is run num_solutions_-
transferred times, each one with a separate starting point. The default number of solutions transferred is one.
Table 4.2 summarizes the sequential hybrid strategy inputs.

In the embedded approach, global and local method strings supplied with the global_method_pointer
and local_method_pointer specifications identify the two methods to be used. The local_search_-
probability setting is an optional specification for supplying the probability (between 0.0 and 1.0) of em-
ploying local search to improve estimates within the global search. Table 4.3 summarizes the embedded hybrid
strategy inputs.

In the collaborative approach, a list of method strings supplied with the method_list specification
specifies the pool of iterators to be used. Any number of iterators may be specified. The method collaboration logic
follows that of either the Agent-Based Optimization or HOPSPACK codes and is currently under development.
Table 4.4 summarizes the collaborative hybrid strategy inputs.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

4.4 Hybrid Minimization Commands 47

Description Keyword Associated Data Status Default
Hybrid strategy hybrid none Required group (1

of 4 selections)
N/A

Sequential hybrid sequential none Required group (1
of 3 selections)

N/A

Adaptive flag adaptive none Optional group nonadaptive hybrid
Adaptive progress
threshold

progress_-
threshold

real Required N/A

Number of
Solutions
Transferred

num_-
solutions_-
transferred

integer Optional 1

List of methods method_list list of strings Required N/A

Table 4.2: Specification detail for sequential hybrid strategies

Description Keyword Associated Data Status Default
Hybrid strategy hybrid none Required group (1

of 4 selections)
N/A

Embedded hybrid embedded none Required group (1
of 3 selections)

N/A

Pointer to the
global method
specification

global_-
method_-
pointer

string Required N/A

Pointer to the local
method
specification

local_-
method_-
pointer

string Required N/A

Probability of
executing local
searches

local_-
search_-
probability

real Optional 0.1

Table 4.3: Specification detail for embedded hybrid strategies

Description Keyword Associated Data Status Default
Hybrid strategy hybrid none Required group (1

of 4 selections)
N/A

Collaborative
hybrid collaborative

none Required group (1
of 3 selections)

N/A

List of methods method_list list of strings Required N/A

Table 4.4: Specification detail for collaborative hybrid strategies

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

48 Strategy Commands

4.5 Multistart Iteration Commands

The multi_start strategy must specify an iterator using method_pointer. This iterator is responsible
for completing a series of iterative analyses from a set of different starting points. These starting points can be
specified as follows: (1) using random_starts, for which the specified number of starting points are selected
randomly within the variable bounds, (2) using starting_points, in which the starting values are provided
in a list, or (3) using both random_starts and starting_points, for which the combined set of points
will be used. In aggregate, at least one starting point must be specified. The most common example of a multi-
start strategy is multi-start optimization, in which a series of optimizations are performed from different starting
values for the design variables. This can be an effective approach for problems with multiple minima. Table 4.5
summarizes the multi-start strategy inputs.

Description Keyword Associated Data Status Default
Multi-start
iteration strategy

multi_start none Required group (1
of 4 selections)

N/A

Method pointer method_-
pointer

string Required N/A

Number of random
starting points

random_-
starts

integer Optional group no random starting
points

Seed for random
starting points

seed integer Optional system-generated
seed

List of
user-specified
starting points

starting_-
points

list of reals Optional no user-specified
starting points

Table 4.5: Specification detail for multi-start strategies

4.6 Pareto Set Optimization Commands

The pareto_set strategy must specify an optimization or least squares calibration method using method_-
pointer. This minimizer is responsible for computing a set of optimal solutions from a set of response weight-
ings (multi-objective weights or least squares term weights). These weightings can be specified as follows: (1)
using random_weight_sets, in which case weightings are selected randomly within [0,1] bounds, (2) using
weight_sets, in which the weighting sets are specified in a list, or (3) using both random_weight_sets
and weight_sets, for which the combined set of weights will be used. In aggregate, at least one set of weights
must be specified. The set of optimal solutions is called the "pareto set," which can provide valuable design
trade-off information when there are competing objectives. Table 4.6 summarizes the pareto set strategy inputs.

4.7 Single Method Commands

The single method strategy is the default if no strategy specification is included in a user input file. It may also be
specified using the single_method keyword within a strategy specification. An optional method_pointer
specification may be used to point to a particular method specification. If method_pointer is not used, then
the last method specification parsed will be used as the iterator. Table 4.7 summarizes the single method strategy
inputs.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

4.7 Single Method Commands 49

Description Keyword Associated Data Status Default
Pareto set
optimization
strategy

pareto_set none Required group (1
of 4 selections)

N/A

Optimization
method pointer

method_-
pointer

string Required N/A

Number of random
weighting sets

random_-
weight_sets

integer Optional no random
weighting sets

Seed for random
weighting sets

seed integer Optional system-generated
seed

List of
user-specified
weighting sets

weight_sets list of reals Optional no user-specified
weighting sets

Table 4.6: Specification detail for pareto set strategies

Description Keyword Associated Data Status Default
Single method
strategy

single_-
method

string Required group (1
of 4 selections)

N/A

Method pointer method_-
pointer

string Optional use of last method
parsed

Table 4.7: Specification detail for single method strategies

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

50 Strategy Commands

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 5

Method Commands

5.1 Method Description

The method section in a DAKOTA input file specifies the name and controls of an iterator. The terms "method"
and "iterator" can be used interchangeably, although method often refers to an input specification whereas iterator
usually refers to an object within the Iterator hierarchy. A method specification, then, is used to select an
iterator from the iterator hierarchy, which includes optimization, uncertainty quantification, least squares, design
of experiments, and parameter study iterators (see the Users Manual [Adams et al., 2010] for more information on
these iterator branches). This iterator may be used alone or in combination with other iterators as dictated by the
strategy specification (refer to Strategy Commands for strategy command syntax and to the Users Manual [Adams
et al., 2010] for strategy algorithm descriptions).

Several examples follow. The first example shows a minimal specification for an optimization method.

method,
dot_sqp

This example uses all of the defaults for this method.

A more sophisticated example would be

method,
id_method = ’NLP1’
model_pointer = ’M1’
dot_sqp

max_iterations = 50
convergence_tolerance = 1e-4
output verbose
optimization_type minimize

This example demonstrates the use of identifiers and pointers (see Method Independent Controls) as well as
some method independent and method dependent controls for the sequential quadratic programming (SQP) al-
gorithm from the DOT library. The max_iterations, convergence_tolerance, and output settings
are method independent controls, in that they are defined for a variety of methods (see DOT method independent
controls for DOT usage of these controls). The optimization_type control is a method dependent control,
in that it is only meaningful for DOT methods (see DOT method dependent controls).

52 Method Commands

The next example shows a specification for a least squares method.

method,
optpp_g_newton

max_iterations = 10
convergence_tolerance = 1.e-8
search_method trust_region
gradient_tolerance = 1.e-6

Some of the same method independent controls are present along with a new set of method dependent controls
(search_method and gradient_tolerance) which are only meaningful for OPT++ methods (see OPT++
method dependent controls).

The next example shows a specification for a nondeterministic method with several method dependent controls
(refer to Nondeterministic sampling method).

method,
nond_sampling

samples = 100 seed = 12345
sample_type lhs
response_levels = 1000. 500.

The last example shows a specification for a parameter study method where, again, each of the controls are method
dependent (refer to Vector parameter study).

method,
vector_parameter_study

step_vector = 1. 1. 1.
num_steps = 10

5.2 Method Specification

As alluded to in the examples above, the method specification has the following structure:

method,
<method independent controls>
<method selection>

<method dependent controls>

where <method selection> is for example one of the following: dot_frcg, dot_mmfd, dot_-
bfgs, dot_slp, dot_sqp, conmin_frcg, conmin_mfd, npsol_sqp, nlssol_sqp, nlpql_sqp,
nl2sol, nonlinear_cg, optpp_cg, optpp_q_newton, optpp_fd_newton, optpp_g_newton,
optpp_newton, optpp_pds, asynch_pattern_search, coliny_cobyla, coliny_direct,
coliny_pattern_search, coliny_solis_wets, coliny_ea, moga, soga, ncsu_direct,
dl_solver, surrogate_based_local, surrogate_based_global, efficient_global,
nond_polynomial_chaos, nond_stoch_collocation, nond_sampling, nond_importance,
nond_local_reliability, nond_global_reliability, nond_local_evidence, nond_-
global_evidence, nond_local_interval_est, nond_global_interval_est, nond_-
bayes_calib, dace, fsu_quasi_mc, fsu_cvt, psuade_moat, vector_parameter_study,
list_parameter_study, centered_parameter_study, or multidim_parameter_study.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.3 Method Independent Controls 53

The <method independent controls> are those controls which are valid for a variety of methods. In
some cases, these controls are abstractions which may have slightly different implementations from one method
to the next. The <method dependent controls> are those controls which are only meaningful for a
specific method or library. Referring to dakota.input.summary, the method independent controls are those
controls defined externally from and prior to the method selection blocks. They are all optional. The method
selection blocks are all required group specifications separated by logical OR’s. The method dependent controls
are those controls defined within the method selection blocks. Defaults for method independent and method
dependent controls are defined in DataMethod. The following sections provide additional detail on the method
independent controls followed by the method selections and their corresponding method dependent controls.

5.3 Method Independent Controls

The method independent controls include a method identifier string, a model type specification with pointers to
variables, interface, and responses specifications, a speculative gradient selection, an output verbosity control,
maximum iteration and function evaluation limits, constraint and convergence tolerance specifications, a scaling
selection, and a set of linear inequality and equality constraint specifications. While each of these controls is not
valid for every method, the controls are valid for enough methods that it was reasonable to pull them out of the
method dependent blocks and consolidate the specifications.

The method identifier string is supplied with id_method and is used to provide a unique identifier string for use
with strategy specifications (refer to Strategy Description). It is appropriate to omit a method identifier string if
only one method is included in the input file and single_method is the selected strategy (all other strategies
require one or more method pointers), since the single method to use is unambiguous in this case.

The model pointer string is specified with model_pointer and is used to identify the model used to perform
function evaluations for the method. If a model pointer string is specified and no corresponding id is available,
DAKOTA will exit with an error message. If no model pointer string is specified, then the last model specification
parsed will be used. If no model pointer string is specified and no model specification is provided by the user, then
a default model specification is used (similar to the default strategy specification, see Strategy Description). This
default model specification is of type single with no variables_pointer, interface_pointer, or
responses_pointer (see Single Model Controls). It is appropriate to omit a model specification whenever
the relationships are unambiguous due to the presence of single variables, interface, and responses specifications.

When performing gradient-based optimization in parallel, speculative gradients can be selected to address
the load imbalance that can occur between gradient evaluation and line search phases. In a typical gradient-based
optimization, the line search phase consists primarily of evaluating the objective function and any constraints
at a trial point, and then testing the trial point for a sufficient decrease in the objective function value and/or
constraint violation. If a sufficient decrease is not observed, then one or more additional trial points may be
attempted sequentially. However, if the trial point is accepted then the line search phase is complete and the
gradient evaluation phase begins. By speculating that the gradient information associated with a given line search
trial point will be used later, additional coarse grained parallelism can be introduced by computing the gradient
information (either by finite difference or analytically) in parallel, at the same time as the line search phase trial-
point function values. This balances the total amount of computation to be performed at each design point and
allows for efficient utilization of multiple processors. While the total amount of work performed will generally
increase (since some speculative gradients will not be used when a trial point is rejected in the line search phase),
the run time will usually decrease (since gradient evaluations needed at the start of each new optimization cycle
were already performed in parallel during the line search phase). Refer to [Byrd et al., 1998] for additional details.
The speculative specification is implemented for the gradient-based optimizers in the DOT, CONMIN, and OPT++
libraries, and it can be used with dakota numerical or analytic gradient selections in the responses specification

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

54 Method Commands

(refer to Gradient Specification for information on these specifications). It should not be selected with vendor
numerical gradients since vendor internal finite difference algorithms have not been modified for this purpose.
In full-Newton approaches, the Hessian is also computed speculatively. NPSOL and NLSSOL do not support
speculative gradients, as their gradient-based line search in user-supplied gradient mode (dakota numerical or
analytic gradients) is a superior approach for load-balanced parallel execution.

Output verbosity control is specified with output followed by silent, quiet, verbose or debug. If there
is no user specification for output verbosity, then the default setting is normal. This gives a total of five output
levels to manage the volume of data that is returned to the user during the course of a study, ranging from full
run annotation plus internal debug diagnostics (debug) to the bare minimum of output containing little more
than the total number of simulations performed and the final solution (silent). Output verbosity is observed
within the Iterator (algorithm verbosity), Model (synchronize/fd_gradients verbosity), Interface (map/synch
verbosity), Approximation (global data fit coefficient reporting),and AnalysisCode (file operation reporting)
class hierarchies; however, not all of these software components observe the full granularity of verbosity settings.
Specific mappings are as follows:

• output silent (i.e., really quiet): silent iterators, silent model, silent interface, quiet approximation,
quiet file operations

• output quiet: quiet iterators, quiet model, quiet interface, quiet approximation, quiet file operations

• output normal: normal iterators, normal model, normal interface, quiet approximation, quiet file oper-
ations

• output verbose: verbose iterators, normal model, verbose interface, verbose approximation, verbose
file operations

• output debug (i.e., really verbose): debug iterators, normal model, debug interface, verbose approxima-
tion, verbose file operations

Note that iterators and interfaces utilize the full granularity in verbosity, whereas models, approximations, and file
operations do not. With respect to iterator verbosity, different iterators implement this control in slightly different
ways (as described below in the method independent controls descriptions for each iterator), however the mean-
ing is consistent. For models, interfaces, approximations, and file operations, quiet suppresses parameter and
response set reporting and silent further suppresses function evaluation headers and scheduling output. Sim-
ilarly, verbose adds file management, approximation evaluation, and global approximation coefficient details,
and debug further adds diagnostics from nonblocking schedulers.

The constraint_tolerance specification determines the maximum allowable value of infeasibility that
any constraint in an optimization problem may possess and still be considered to be satisfied. It is specified as
a positive real value. If a constraint function is greater than this value then it is considered to be violated by the
optimization algorithm. This specification gives some control over how tightly the constraints will be satisfied
at convergence of the algorithm. However, if the value is set too small the algorithm may terminate with one or
more constraints being violated. This specification is currently meaningful for the NPSOL, NLSSOL, DOT and
CONMIN constrained optimizers (refer to DOT method independent controls and NPSOL method independent
controls).

The convergence_tolerance specification provides a real value for controlling the termination of iteration.
In most cases, it is a relative convergence tolerance for the objective function; i.e., if the change in the objec-
tive function between successive iterations divided by the previous objective function is less than the amount
specified by convergence_tolerance, then this convergence criterion is satisfied on the current iteration. Since no
progress may be made on one iteration followed by significant progress on a subsequent iteration, some libraries

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.3 Method Independent Controls 55

require that the convergence tolerance be satisfied on two or more consecutive iterations prior to termination of
iteration. This control is used with optimization and least squares iterators (DOT, CONMIN, NPSOL, NLSSOL,
OPT++, and Coliny) and is not used within the uncertainty quantification, design of experiments, or parame-
ter study iterator branches. Refer to DOT method independent controls, NPSOL method independent controls,
OPT++ method independent controls, and Coliny method independent controls for specific interpretations of the
convergence_tolerance specification.

The max_iterations and max_function_evaluations controls provide integer limits for the maxi-
mum number of iterations and maximum number of function evaluations, respectively. The difference between an
iteration and a function evaluation is that a function evaluation involves a single parameter to response mapping
through an interface, whereas an iteration involves a complete cycle of computation within the iterator. Thus,
an iteration generally involves multiple function evaluations (e.g., an iteration contains descent direction and line
search computations in gradient-based optimization, population and multiple offset evaluations in nongradient-
based optimization, etc.). This control is not currently used within the uncertainty quantification, design of exper-
iments, and parameter study iterator branches, and in the case of optimization and least squares, does not currently
capture function evaluations that occur as part of the method_source dakota finite difference routine (since
these additional evaluations are intentionally isolated from the iterators).

Continuous design variable, function, and constraint scaling can be turned on for optimizers and least squares
minimizers by providing the scaling keyword. Discrete variable scaling is not supported. When scaling
is enabled, variables, functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in
scaled variable space, whereas evaluations of the computational model as specified in the interface are per-
formed on the original problem scale. Therefore using scaling does not require rewriting the interface to the
simulation code. The user may specify no, one, or a vector of scaling type strings through each of the scale_-
types (see Variables Commands); objective_function_scale_types, least_squares_term_-
scale_types, nonlinear_inequality_scale_types, nonlinear_equality_scale_types
(see Function Specification); linear_inequality_scale_types, and linear_equality_scale_-
types (see Method Independent Controls below) specifications. Valid options for types include ’none’
(default), ’value’, ’auto’, or ’log’, for no, characteristic value, automatic, or logarithmic scaling, re-
spectively, although not all types are valid for scaling all entities (see the references for details). If a sin-
gle string is specified using any of these keywords it will apply to each component of the relevant vector,
e.g., scale_types = ’value’ will enable characteristic value scaling for each continuous design vari-
able. The user may specify no, one, or a vector of nonzero characteristic scale values through each of
the scales (see Variables Commands); objective_function_scales, least_squares_term_-
scales, nonlinear_inequality_scales, nonlinear_equality_scales (see Function Speci-
fication); linear_inequality_scales, and linear_equality_scales (see Method Independent
Controls below) specifications. These values are ignored for scaling type ’none’, required for ’value’,
and optional for ’auto’ and ’log’. If a single value is specified using any of these keywords it will apply to
each component of the relevant vector, e.g., scales = 3.0 will apply a characteristic scaling value of 3.0 to
each continuous design variable. When the scaling keyword is omitted, all _scale_types and ∗_scales
specifications are ignored in the method, variables, and responses sections.

When scaling is enabled, the following procedures determine the transformations used to scale each component
of a variables or response vector. In all cases, if scaling would result in division by a value smaller in magnitude
than 1.0e-3, a warning is issued and no scaling performed for that component.

• None (’none’): no scaling performed (∗_scales ignored) on this component

• Characteristic value (’value’): the corresponding quantity is scaled by the (required) characteristic value
provided in the ∗_scales specification. If the scale value is negative, the sense of inequalities are changed
accordingly.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

56 Method Commands

• Automatic (’auto’): First, any characteristic values from the optional ∗_scales specification are ap-
plied. Then, automatic scaling will be attempted according to the following scheme:

– two-sided bounds scaled into the interval [0,1];

– one-sided bound or targets are scaled by the characteristic value, moving the bound or target to 1. and
changing the sense of inequalities where necessary;

– no bounds or targets: no automatic scaling possible, therefore no scaling for this component

Automatic scaling is not available for objective functions nor least squares terms since they lack bound
constraints. Futher, when automatically scaled, linear constraints are scaled by characteristic values only,
not affinely scaled into [0,1].

• Logarithmic (’log’): First, any characteristic values from the optional ∗_scales specification are ap-
plied. Then, logarithm base 10 scaling is applied. Logarithmic scaling is not available for linear constraints.
Further, when continuous design variables are log scaled, linear constraints are not allowed.

Table 5.1 provides the specification detail for the method independent controls involving identifiers, pointers,
tolerances, limits, output verbosity, speculative gradients, and scaling.

Linear inequality constraints can be supplied with the linear_inequality_constraint_matrix,
linear_inequality_lower_bounds, and linear_inequality_upper_bounds specifications,
and linear equality constraints can be supplied with the linear_equality_constraint_matrix and
linear_equality_targets specifications. In the inequality case, the constraint matrix provides coeffi-
cients for the variables and the lower and upper bounds provide constraint limits for the following two-sided
formulation:

al ≤ Ax ≤ au

As with nonlinear inequality constraints (see Objective and constraint functions (optimization data set)), the de-
fault linear inequality constraint bounds are selected so that one-sided inequalities of the form

Ax ≤ 0.0

result when there are no user bounds specifications (this provides backwards compatibility with previous
DAKOTA versions). In a user bounds specification, any upper bound values greater than +bigRealBound-
Size (1.e+30, as defined in Minimizer) are treated as +infinity and any lower bound values less than -big-
RealBoundSize are treated as -infinity. This feature is commonly used to drop one of the bounds in order to
specify a 1-sided constraint (just as the default lower bounds drop out since -DBL_MAX < -bigRealBound-
Size). In the equality case, the constraint matrix again provides coefficients for the variables and the targets
provide the equality constraint right hand sides:

Ax = at

and the defaults for the equality constraint targets enforce a value of 0. for each constraint

Ax = 0.0

Currently, DOT, CONMIN, NPSOL, NLSSOL, and OPT++ all support specialized handling of linear constraints
(either directly through the algorithm itself or indirectly through the DAKOTA wrapper). Coliny optimizers will
support linear constraints in future releases. Linear constraints need not be computed by the user’s interface on
every function evaluation; rather the coefficients, bounds, and targets of the linear constraints can be provided at

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.3 Method Independent Controls 57

Description Keyword Associated Data Status Default
Method set
identifier

id_method string Optional strategy use of last
method parsed

Model pointer model_-
pointer

string Optional method use of last
model parsed (or
use of default
model if none
parsed)

Speculative
gradients and
Hessians

speculative none Optional no speculation

Output verbosity output silent | quiet
| verbose |
debug

Optional normal

Maximum
iterations

max_-
iterations

integer Optional optimization/least
squares: 100,
fsu_cvt: 30,
nond_local_-
reliability:
10

Maximum function
evaluations

max_-
function_-
evaluations

integer Optional 1000

Constraint
tolerance

constraint_-
tolerance

real Optional Library default

Convergence
tolerance convergence_-

tolerance

real Optional 1.e-4

Scaling flag scaling none Optional no scaling

Table 5.1: Specification detail for the method independent controls: identifiers, pointers, tolerances, limits, output
verbosity, speculative gradients, and scaling

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

58 Method Commands

start up, allowing the optimizers to track the linear constraints internally. It is important to recognize that linear
constraints are those constraints that are linear in the design variables, e.g.:

0.0 ≤ 3x1 − 4x2 + 2x3 ≤ 15.0

x1 + x2 + x3 ≥ 2.0

x1 + x2 − x3 = 1.0

which is not to be confused with something like

s(X)− sfail ≤ 0.0

where the constraint is linear in a response quantity, but may be a nonlinear implicit function of the design
variables. For the three linear constraints above, the specification would appear as:

linear_inequality_constraint_matrix = 3.0 -4.0 2.0
1.0 1.0 1.0

linear_inequality_lower_bounds = 0.0 2.0
linear_inequality_upper_bounds = 15.0 1.e+50
linear_equality_constraint_matrix = 1.0 1.0 -1.0
linear_equality_targets = 1.0

where the 1.e+50 is a dummy upper bound value which defines a 1-sided inequality since it is greater than
bigRealBoundSize. The constraint matrix specifications list the coefficients of the first constraint followed
by the coefficients of the second constraint, and so on. They are divided into individual constraints based on the
number of design variables, and can be broken onto multiple lines for readability as shown above.

The linear_inequality_scale_types and linear_equality_scale_types specifications pro-
vide strings specifying the scaling type for each linear inequality or equality constraint, respectively, in meth-
ods that support scaling, when scaling is enabled (see Method Independent Controls for details). Each entry in
linear_∗_scale_types may be selected from ’none’, ’value’, or ’auto’ to select no, characteristic
value, or automatic scaling, respectively. If a single string is specified it will apply to each constraint component.
Each entry in linear_inequality_scales or linear_equality_scales may be a user-specified
nonzero characteristic value to be used in scaling each constraint. These values are ignored for scaling type
’none’, required for ’value’, and optional for ’auto’. If a single real value is specified it will apply to all
components of the constraint. Scaling for linear constraints is applied after any continuous variable scaling. For
example, for variable scaling on continuous design variables x:

x̃j =
xj − xj

O

xj
M

we have the following system for linear inequality constraints

aL ≤ Aix ≤ aU

aL ≤ Ai (diag(xM)x̃ + xO) ≤ aU

aL −AixO ≤ Aidiag(xM)x̃ ≤ aU −AixO

ãL ≤ Ãix̃ ≤ ãU

and user-specified or automatically computed scaling multipliers are appplied to this final transformed system,
which accounts for continuous design variable scaling. When automatic scaling is in use for linear constraints
they are linearly scaled by a computed characteristic value, but not affinely to [0,1].

Table 5.2 provides the specification detail for the method independent controls involving linear constraints.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.3 Method Independent Controls 59

Description Keyword Associated Data Status Default
Linear inequality
coefficient matrix

linear_-
inequality_-
constraint_-
matrix

list of reals Optional no linear inequality
constraints

Linear inequality
lower bounds

linear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Linear inequality
upper bounds

linear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Linear inequality
scaling types

linear_-
inequality_-
scale_types

list of strings Optional vector values =
’none’

Linear inequality
scales

linear_-
inequality_-
scales

list of reals Optional vector values = 1.
(no scaling)

Linear equality
coefficient matrix

linear_-
equality_-
constraint_-
matrix

list of reals Optional no linear equality
constraints

Linear equality
targets

linear_-
equality_-
targets

list of reals Optional vector values = 0.

Linear equality
scaling types

linear_-
equality_-
scale_types

list of strings Optional vector values =
’none’

Linear equality
scales

linear_-
equality_-
scales

list of reals Optional vector values = 1.
(no scaling)

Table 5.2: Specification detail for the method independent controls: linear inequality and equality constraints

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

60 Method Commands

5.4 Optimization Methods

The DAKOTA project started as an toolbox for optimization methods, and has accumulated a broad variety of
gradient-based and nongradient-based optimizers from the DOT, NPSOL, NLPQL, CONMIN, OPT++, APPS,
COLINY, NCSU, and JEGA packages. These capabilities are described below.

5.4.1 DOT Methods

The DOT library [Vanderplaats Research and Development, 1995] contains nonlinear programming optimizers,
specifically the Broyden-Fletcher-Goldfarb-Shanno (DAKOTA’s dot_bfgsmethod) and Fletcher-Reeves conju-
gate gradient (DAKOTA’s dot_frcgmethod) methods for unconstrained optimization, and the modified method
of feasible directions (DAKOTA’s dot_mmfd method), sequential linear programming (DAKOTA’s dot_slp
method), and sequential quadratic programming (DAKOTA’s dot_sqp method) methods for constrained opti-
mization. DAKOTA provides access to the DOT library through the DOTOptimizer class.

DOT method independent controls The method independent controls for max_iterations and max_-
function_evaluations limit the number of major iterations and the number of function evaluations that
can be performed during a DOT optimization. The convergence_tolerance control defines the threshold
value on relative change in the objective function that indicates convergence. This convergence criterion must
be satisfied for two consecutive iterations before DOT will terminate. The constraint_tolerance spec-
ification defines how tightly constraint functions are to be satisfied at convergence. The default value for DOT
constrained optimizers is 0.003. Extremely small values for constraint_tolerance may not be attainable. The
output verbosity specification controls the amount of information generated by DOT: the silent and quiet
settings result in header information, final results, and objective function, constraint, and parameter information
on each iteration; whereas the verbose and debug settings add additional information on gradients, search di-
rection, one-dimensional search results, and parameter scaling factors. DOT contains no parallel algorithms which
can directly take advantage of concurrent evaluations. However, if numerical_gradients with method_-
source dakota is specified, then the finite difference function evaluations can be performed concurrently (us-
ing any of the parallel modes described in the Users Manual [Adams et al., 2010]). In addition, if speculative
is specified, then gradients (dakota numerical or analytic gradients) will be computed on each line search
evaluation in order to balance the load and lower the total run time in parallel optimization studies. Lastly, special-
ized handling of linear constraints is supported with DOT; linear constraint coefficients, bounds, and targets can
be provided to DOT at start-up and tracked internally. Specification detail for these method independent controls
is provided in Tables 5.1 through 5.2.

DOT method dependent controls DOT’s only method dependent control is optimization_type which
may be either minimize or maximize. DOT provides the only set of methods within DAKOTA which support
this control; to convert a maximization problem into the minimization formulation assumed by other methods,
simply change the sign on the objective function (i.e., multiply by -1). Table 5.3 provides the specification detail
for the DOT methods and their method dependent controls.

Description Keyword Associated Data Status Default
Optimization type

optimization_-
type

minimize |
maximize

Optional group minimize

Table 5.3: Specification detail for the DOT methods

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 61

5.4.2 NPSOL Method

The NPSOL library [Gill et al., 1986] contains a sequential quadratic programming (SQP) implementation (the
npsol_sqp method). SQP is a nonlinear programming optimizer for constrained minimization. DAKOTA
provides access to the NPSOL library through the NPSOLOptimizer class.

NPSOL method independent controls The method independent controls for max_iterations and max_-
function_evaluations limit the number of major SQP iterations and the number of function evalua-
tions that can be performed during an NPSOL optimization. The convergence_tolerance control defines
NPSOL’s internal optimality tolerance which is used in evaluating if an iterate satisfies the first-order Kuhn-Tucker
conditions for a minimum. The magnitude of convergence_tolerance approximately specifies the num-
ber of significant digits of accuracy desired in the final objective function (e.g., convergence_tolerance =
1.e-6 will result in approximately six digits of accuracy in the final objective function). The constraint_-
tolerance control defines how tightly the constraint functions are satisfied at convergence. The default value
is dependent upon the machine precision of the platform in use, but is typically on the order of 1.e-8 for dou-
ble precision computations. Extremely small values for constraint_tolerance may not be attainable.
The output verbosity setting controls the amount of information generated at each major SQP iteration: the
silent and quiet settings result in only one line of diagnostic output for each major iteration and print the fi-
nal optimization solution, whereas the verbose and debug settings add additional information on the objective
function, constraints, and variables at each major iteration.

NPSOL is not a parallel algorithm and cannot directly take advantage of concurrent evaluations. However, if
numerical_gradients with method_source dakota is specified, then the finite difference function
evaluations can be performed concurrently (using any of the parallel modes described in the Users Manual [Adams
et al., 2010]). An important related observation is the fact that NPSOL uses two different line searches depend-
ing on how gradients are computed. For either analytic_gradients or numerical_gradients with
method_source dakota, NPSOL is placed in user-supplied gradient mode (NPSOL’s "Derivative Level" is
set to 3) and it uses a gradient-based line search (the assumption is that user-supplied gradients are inexpensive).
On the other hand, if numerical_gradients are selected with method_source vendor, then NPSOL is
computing finite differences internally and it will use a value-based line search (the assumption is that finite dif-
ferencing on each line search evaluation is too expensive). The ramifications of this are: (1) performance will vary
between method_source dakota and method_source vendor for numerical_gradients, and (2)
gradient speculation is unnecessary when performing optimization in parallel since the gradient-based line search
in user-supplied gradient mode is already load balanced for parallel execution. Therefore, a speculative spec-
ification will be ignored by NPSOL, and optimization with numerical gradients should select method_source
dakota for load balanced parallel operation and method_source vendor for efficient serial operation.

Lastly, NPSOL supports specialized handling of linear inequality and equality constraints. By specifying the
coefficients and bounds of the linear inequality constraints and the coefficients and targets of the linear equality
constraints, this information can be provided to NPSOL at initialization and tracked internally, removing the
need for the user to provide the values of the linear constraints on every function evaluation. Refer to Method
Independent Controls for additional information and to Tables 5.1 through 5.2 for method independent control
specification detail.

NPSOL method dependent controls NPSOL’s method dependent controls are verify_level,
function_precision, and linesearch_tolerance. The verify_level control instructs NPSOL
to perform finite difference verifications on user-supplied gradient components. The function_precision
control provides NPSOL an estimate of the accuracy to which the problem functions can be computed. This is
used to prevent NPSOL from trying to distinguish between function values that differ by less than the inherent

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

62 Method Commands

error in the calculation. And the linesearch_tolerance setting controls the accuracy of the line search.
The smaller the value (between 0 and 1), the more accurately NPSOL will attempt to compute a precise minimum
along the search direction. Table 5.4 provides the specification detail for the NPSOL SQP method and its method
dependent controls.

Description Keyword Associated Data Status Default
Gradient
verification level

verify_level integer Optional -1 (no gradient
verification)

Function precision function_-
precision

real Optional 1.e-10

Line search
tolerance

linesearch_-
tolerance

real Optional 0.9 (inaccurate line
search)

Table 5.4: Specification detail for the NPSOL SQP method

5.4.3 NLPQL Methods

The NLPQL library is a commercially-licensed library containing a sequential quadratic programming (SQP)
optimizer, specified as DAKOTA’s nlpql_sqp method, for constrained optimization. The particular implemen-
tation used is NLPQLP [Schittkowski, 2004], a variant with distributed and non-monotone line search. DAKOTA
provides access to the NLPQL library through the NLPQLPOptimizer class.

NLPQL method independent controls The method independent controls for maximum iterations and output
verbosity are mapped to NLPQL controls MAXIT and IPRINT, respectively. The maximum number of function
evaluations is enforced within the NLPQLPOptimizer class.

NLPQL method dependent controls NLPQL does not currently support any method dependent controls.

5.4.4 CONMIN Methods

The CONMIN library [Vanderplaats, 1973] is a public domain library of nonlinear programming optimizers,
specifically the Fletcher-Reeves conjugate gradient (DAKOTA’s conmin_frcg method) method for uncon-
strained optimization, and the method of feasible directions (DAKOTA’s conmin_mfd method) for constrained
optimization. As CONMIN was a predecessor to the DOT commercial library, the algorithm controls are very
similar. DAKOTA provides access to the CONMIN library through the CONMINOptimizer class.

CONMIN method independent controls The interpretations of the method independent controls for CONMIN
are essentially identical to those for DOT. Therefore, the discussion in DOT method independent controls is
relevant for CONMIN.

CONMIN method dependent controls CONMIN does not currently support any method dependent controls.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 63

5.4.5 OPT++ Methods

The OPT++ library [Meza et al., 2007] contains primarily gradient-based nonlinear programming optimizers
for unconstrained, bound-constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradi-
ent (DAKOTA’s optpp_cg method), quasi-Newton (DAKOTA’s optpp_q_newton method), finite difference
Newton (DAKOTA’s optpp_fd_newton method), and full Newton (DAKOTA’s optpp_newton method).
The conjugate gradient method is strictly unconstrained, and each of the Newton-based methods are automatically
bound to the appropriate OPT++ algorithm based on the user constraint specification (unconstrained, bound-
constrained, or generally-constrained). In the generally-constrained case, the Newton methods use a nonlinear
interior-point approach to manage the constraints. The library also contains a direct search algorithm, PDS (paral-
lel direct search, DAKOTA’s optpp_pdsmethod), which supports bound constraints. DAKOTA provides access
to the OPT++ library through the SNLLOptimizer class, where "SNLL" denotes Sandia National Laboratories -
Livermore.

OPT++ method independent controls The method independent controls for max_iterations and max_-
function_evaluations limit the number of major iterations and the number of function evaluations that can
be performed during an OPT++ optimization. The convergence_tolerance control defines the threshold
value on relative change in the objective function that indicates convergence. The output verbosity specification
controls the amount of information generated from OPT++ executions: the debug setting turns on OPT++’s
internal debug mode and also generates additional debugging information from DAKOTA’s SNLLOptimizer
wrapper class. OPT++’s gradient-based methods are not parallel algorithms and cannot directly take advantage
of concurrent function evaluations. However, if numerical_gradients with method_source dakota
is specified, a parallel DAKOTA configuration can utilize concurrent evaluations for the finite difference gradient
computations. OPT++’s nongradient-based PDS method can directly exploit asynchronous evaluations; however,
this capability has not yet been implemented in the SNLLOptimizer class.

The speculative specification enables speculative computation of gradient and/or Hessian information, where
applicable, for parallel optimization studies. By speculating that the derivative information at the current point
will be used later, the complete data set (all available gradient/Hessian information) can be computed on every
function evaluation. While some of these computations will be wasted, the positive effects are a consistent parallel
load balance and usually shorter wall clock time. The speculative specification is applicable only when par-
allelism in the gradient calculations can be exploited by DAKOTA (it will be ignored for vendor numerical
gradients).

Lastly, linear constraint specifications are supported by each of the Newton methods (optpp_newton,
optpp_q_newton, optpp_fd_newton, and optpp_g_newton); whereas optpp_cg must be uncon-
strained and optpp_pds can be, at most, bound-constrained. Specification detail for the method independent
controls is provided in Tables 5.1 through 5.2.

OPT++ method dependent controls OPT++’s method dependent controls are max_step, gradient_-
tolerance, search_method, merit_function, central_path, steplength_to_boundary,
centering_parameter, and search_scheme_size. The max_step control specifies the maximum
step that can be taken when computing a change in the current design point (e.g., limiting the Newton step com-
puted from current gradient and Hessian information). It is equivalent to a move limit or a maximum trust region
size. The gradient_tolerance control defines the threshold value on the L2 norm of the objective function
gradient that indicates convergence to an unconstrained minimum (no active constraints). The gradient_-
tolerance control is defined for all gradient-based optimizers.

max_step and gradient_tolerance are the only method dependent controls for the OPT++ conjugate
gradient method. Table 5.5 covers this specification.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

64 Method Commands

Description Keyword Associated Data Status Default
OPT++ conjugate
gradient method

optpp_cg none Required N/A

Maximum step
size

max_step real Optional 1000.

Gradient tolerance gradient_-
tolerance

real Optional 1.e-4

Table 5.5: Specification detail for the OPT++ conjugate gradient method

The search_method control is defined for all Newton-based optimizers and is used to select between
trust_region, gradient_based_line_search, and value_based_line_search methods. The
gradient_based_line_search option uses the line search method proposed by [More and Thuente, 1994].
This option satisfies sufficient decrease and curvature conditions; whereas, value_base_line_search only
satisfies the sufficient decrease condition. At each line search iteration, the gradient_based_line_search
method computes the function and gradient at the trial point. Consequently, given expensive function evaluations,
the value_based_line_search method is preferred to the gradient_based_line_search method.
Each of these Newton methods additionally supports the tr_pds selection for unconstrained problems. This
option performs a robust trust region search using pattern search techniques. Use of a line search is the default
for bound-constrained and generally-constrained problems, and use of a trust_region search method is the
default for unconstrained problems.

The merit_function, central_path, steplength_to_boundary, and centering_parameter
selections are additional specifications that are defined for the solution of generally-constrained problems with
nonlinear interior-point algorithms. A merit_function is a function in constrained optimization that attempts
to provide joint progress toward reducing the objective function and satisfying the constraints. Valid string inputs
are "el_bakry", "argaez_tapia", or "van_shanno", where user input is not case sensitive in this case. Details for
these selections are as follows:

• The "el_bakry" merit function is the L2-norm of the first order optimality conditions for the nonlinear
programming problem. The cost per linesearch iteration is n+1 function evaluations. For more information,
see [El-Bakry et al., 1996].

• The "argaez_tapia" merit function can be classified as a modified augmented Lagrangian function. The
augmented Lagrangian is modified by adding to its penalty term a potential reduction function to handle
the perturbed complementarity condition. The cost per linesearch iteration is one function evaluation. For
more information, see [Tapia and Argaez].

• The "van_shanno" merit function can be classified as a penalty function for the logarithmic barrier formu-
lation of the nonlinear programming problem. The cost per linesearch iteration is one function evaluation.
For more information see [Vanderbei and Shanno, 1999].

If the function evaluation is expensive or noisy, set the merit_function to "argaez_tapia" or "van_shanno".

The central_path specification represents a measure of proximity to the central path and specifies an update
strategy for the perturbation parameter mu. Refer to [Argaez et al., 2002] for a detailed discussion on proximity
measures to the central region. Valid options are, again, "el_bakry", "argaez_tapia", or "van_shanno", where user
input is not case sensitive. The default value for central_path is the value of merit_function (either
user-selected or default). The steplength_to_boundary specification is a parameter (between 0 and 1) that

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 65

controls how close to the boundary of the feasible region the algorithm is allowed to move. A value of 1 means
that the algorithm is allowed to take steps that may reach the boundary of the feasible region. If the user wishes to
maintain strict feasibility of the design parameters this value should be less than 1. Default values are .8, .99995,
and .95 for the "el_bakry", "argaez_tapia", and "van_shanno" merit functions, respectively. The centering_-
parameter specification is a parameter (between 0 and 1) that controls how closely the algorithm should follow
the "central path". See [Wright] for the definition of central path. The larger the value, the more closely the
algorithm follows the central path, which results in small steps. A value of 0 indicates that the algorithm will take
a pure Newton step. Default values are .2, .2, and .1 for the "el_bakry", "argaez_tapia", and "van_shanno" merit
functions, respectively.

Table 5.6 provides the details for the Newton-based methods.

Description Keyword Associated Data Status Default
OPT++
Newton-based
methods

optpp_q_-
newton |
optpp_fd_-
newton |
optpp_newton

none Required group N/A

Search method value_-
based_line_-
search |
gradient_-
based_line_-
search |
trust_region |
tr_pds

none Optional group trust_region
(unconstrained),
value_-
based_line_-
search
(bound/general
constraints)

Maximum step
size

max_step real Optional 1000.

Gradient tolerance gradient_-
tolerance

real Optional 1.e-4

Merit function merit_-
function

string Optional "argaez_-
tapia"

Central path central_path string Optional value of merit_-
function

Steplength to
boundary

steplength_-
to_boundary

real Optional Merit function
dependent: 0.8
(el_bakry),
0.99995
(argaez_tapia),
0.95 (van_shanno)

Centering
parameter

centering_-
parameter

real Optional Merit function
dependent: 0.2
(el_bakry), 0.2
(argaez_tapia), 0.1
(van_shanno)

Table 5.6: Specification detail for OPT++ Newton-based optimization methods

The search_scheme_size is defined for the PDS method to specify the number of points to be used in the
direct search template. PDS does not support parallelism at this time due to current limitations in the OPT++

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

66 Method Commands

interface. Table 5.7 provides the detail for the parallel direct search method.

Description Keyword Associated Data Status Default
OPT++ parallel
direct search
method

optpp_pds none Required group N/A

Search scheme size search_-
scheme_size

integer Optional 32

Table 5.7: Specification detail for the OPT++ PDS method

5.4.6 Asynchronous Parallel Pattern Search (APPS)

The asynchronous parallel pattern search algorithm [Gray and Kolda, 2006] is a fully asynchronous pattern
search technique in that the search along each offset direction continues without waiting for searches along
other directions to finish. APPSPACK can handle unconstrained problems as well as those with bound con-
straints, linear constraints, and general nonlinear constraints. APPSPACK is available to the public under the
GNU LGPL and the source code is included with DAKOTA. APPS-specific software documentation is available
from http://software.sandia.gov/appspack.

APPS method independent controls The only method independent controls that are currently mapped to APPS
are max_function_evaluations, constraint_tolerance, and the output verbosity control. The
APPS internal "debug" level is mapped to the DAKOTA debug, verbose, normal, quiet, and silent
settings as follows:

• DAKOTA "debug": APPS debug level = 7

• DAKOTA "verbose": APPS debug level = 4

• DAKOTA "normal": APPS debug level = 3

• DAKOTA "quiet": APPS debug level = 2

• DAKOTA ""silent": APPS debug level = 1

APPS exploits parallelism through the use of DAKOTA’s concurrent function evaluations. The nature of the
algorithm, however, limits the amount of concurrency that can be exploited. In particular, APPS can leverage an
evaluation concurrency level of at most twice the number of variables.

APPS method dependent controls The APPS method is invoked using a asynch_pattern_search
group specification. Some of the method dependent controls are similar to the Coliny controls for coliny_-
pattern_search described in Pattern Search. In particular, APPS supports the following step length control
parameters

• initial_delta: the initial step length

• threshold_delta: step length used to determine convergence

• contraction_factor: amount by which step length is rescaled after unsuccesful iterates

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://software.sandia.gov/appspack.

5.4 Optimization Methods 67

When the solution to the optimization problem is known to be zero, the user may specify a value for solution_-
target as a termination criteria. APPS will terminate when the function value falls below solution_-
target.

Currently, APPS only supports coordinate bases with a total of 2n function evaluations in the pattern, and these
patterns may only contract. The synchronization specification can be used to specify the use of either
blocking or nonblocking schedulers for APPS. The blocking option causes APPS to behave as a syn-
chronous algorithm. The nonblocking option is not available when Dakota is used in message-passing mode.

APPS solves nonlinearly constrained problems by solving a sequence of linearly constrained merit function-
base subproblems. There are several exact and smoothed exact penalty functions that can be specified with the
merit_function control. The options are as follows:

• merit_max: based on `∞ norm

• merit_max_smooth: based on smoothed `∞ norm

• merit1: based on `1 norm

• merit1_smooth: based on smoothed `1 norm

• merit2: based on `2 norm

• merit2_smooth: based on smoothed `2 norm

• merit2_squared: based on `22 norm

The user can also specify a constraint_penalty and smoothing_parameter. Table 5.8 summarizes
the APPS specification.

5.4.7 Coliny Methods

Coliny is a collection of nongradient-based optimizers that support the Common Optimization Library IN-
terface (COLIN). Coliny optimizers currently include coliny_cobyla, coliny_direct, coliny_ea,
coliny_pattern_search and coliny_solis_wets. Additional Coliny information is available from
http://software.sandia.gov/Acro/Coliny/.

Coliny solvers now support bound constraints and general nonlinear constraints. Supported nonlinear constraints
include both equality and two-sided inequality constraints. Coliny solvers do not yet support linear constraints.
Most Coliny optimizers treat constraints with a simple penalty scheme that adds constraint_penalty times
the sum of squares of the constraint violations to the objective function. Specific exceptions to this method for
handling constraint violations are noted below. (The default value of constraint_penalty is 1000.0, except
for methods that dynamically adapt their constraint penalty, for which the default value is 1.0.)

Coliny method independent controls The method independent controls for max_iterations and max_-
function_evaluations limit the number of major iterations and the number of function evaluations that
can be performed during a Coliny optimization, respectively. The convergence_tolerance control defines
the threshold value on relative change in the objective function that indicates convergence. The output verbosity
specification controls the amount of information generated by Coliny: the silent, quiet, and normal set-
tings correspond to minimal reporting from Coliny, whereas the verbose setting corresponds to a higher level of
information, and debug outputs method initialization and a variety of internal Coliny diagnostics. The majority

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://software.sandia.gov/Acro/Coliny/.

68 Method Commands

Description Keyword Associated Data Status Default
APPS method asynch_-

pattern_-
search

none Required group N/A

Initial offset value initial_-
delta

real Optional 1.0

Threshold for
offset values

threshold_-
delta

real Optional 0.01

Pattern contraction
factor contraction_-

factor

real Optional 0.5

Solution target solution_-
target

real Optional not used

Evaluation
synchronization synchronization

blocking |
nonblocking

Optional nonblocking

Merit function merit_-
function

merit_max |
merit_max_-
smooth |
merit1 |
merit1_-
smooth |
merit2 |
merit2_-
smooth |
merit2_-
squared

Optional merit2_-
smooth

Constraint penalty constraint_-
penalty

real Optional 1.0

Smoothing factor smoothing_-
factor

real Optional 1.0

Table 5.8: Specification detail for the APPS method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 69

of Coliny’s methods perform independent function evaluations that can directly take advantage of DAKOTA’s par-
allel capabilities. Only coliny_solis_wets, coliny_cobyla, and certain configurations of coliny_-
pattern_search are inherently serial (see Pattern Search). The parallel methods automatically utilize parallel
logic when the DAKOTA configuration supports parallelism. Lastly, neither speculative gradients nor linear
constraints are currently supported with Coliny. Specification detail for method independent controls is provided
in Tables 5.1 through 5.2.

Some COLINY methods exploit parallelism through the use of DAKOTA’s concurrent function evaluations. The
nature of the algorithms, however, limits the amount of concurrency that can be exploited. The maximum amount
of evaluation concurrency that can be leveraged by the various methods is as follows:

• COBYLA: one

• DIRECT: twice the number of variables

• Evolutionary Algorithms: size of the population

• Pattern Search: size of the search pattern

• Solis-Wets: one

Coliny method dependent controls All Coliny methods support the show_misc_options optional speci-
fication which results in a dump of all the allowable method inputs. Note that the information provided by this
command refers to optimizer parameters that are internal to Coliny, and which may differ from corresponding
parameters used by the DAKOTA interface. The misc_options optional specification provides a means for
inputing additional settings supported by the Coliny methods but which are not currently mapped through the
DAKOTA input specification. Care must be taken in using this specification; they should only be employed by
users familiar with the full range of parameter specifications available directly from Coliny and understand any
differences that exist between those specifications and the ones available through DAKOTA.

Each of the Coliny methods supports the solution_target control, which defines a convergence criterion in
which the optimizer will terminate if it finds an objective function value lower than the specified target. Specifi-
cation detail for method dependent controls for all Coliny methods is provided in Table 5.9.

Description Keyword Associated Data Status Default
Show
miscellaneous
options

show_misc_-
options

none Optional no dump of
specification
options

Specify
miscellaneous
options

misc_options list of strings Optional no miscellaneous
options specified

Desired solution
target

solution_-
target

real Optional -DBL_MAX

Table 5.9: Specification detail for Coliny method dependent controls

Each Coliny method supplements the settings of Table 5.9 with controls which are specific to its particular class
of method.

COBYLA The Constrained Optimization BY Linear Approximations (COBYLA) algorithm is an extension to
the Nelder-Mead simplex algorithm for handling general linear/nonlinear constraints and is invoked using the

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

70 Method Commands

coliny_cobyla group specification. The COBYLA algorithm employs linear approximations to the objective
and constraint functions, the approximations being formed by linear interpolation at N+1 points in the space of the
variables. We regard these interpolation points as vertices of a simplex. The step length parameter controls the size
of the simplex and it is reduced automatically from initial_delta to threshold_delta. One advantage
that COBYLA has over many of its competitors is that it treats each constraint individually when calculating a
change to the variables, instead of lumping the constraints together into a single penalty function.

COBYLA currently only supports termination based on the max_function_evaluations and
solution_target specifications. The search performed by COBYLA is currently not parallelized.

Table 5.10 summarizes the COBYLA specification.

Description Keyword Associated Data Status Default
COBYLA method coliny_-

cobyla
none Required group N/A

Initial offset value initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Table 5.10: Specification detail for the COBYLA method

DIRECT The DIviding RECTangles (DIRECT) optimization algorithm is a derivative free global optimization
method that balances local search in promising regions of the design space with global search in unexplored
regions. As shown in Figure 5.1, DIRECT adaptively subdivides the space of feasible design points so as to
guarantee that iterates are generated in the neighborhood of a global minimum in finitely many iterations.

Potentially

Optimal

Boxes

1st Iteration

=

4th Iteration3rd Iteration

= Points
 Selected
 for Analysis

2nd Iteration

= Analyzed
 Points

Figure 5.1: Design space partitioning with DIRECT

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 71

In practice, DIRECT has proven an effective heuristic for engineering design applications, for which it is able to
quickly identify candidate solutions that can be further refined with fast local optimizers.

DIRECT uses the solution_target, constraint_penalty and show_misc_options specifications
that are described in Coliny method dependent controls. Note, however, that DIRECT uses a fixed penalty value
for constraint violations (i.e. it is not dynamically adapted as is done in coliny_pattern_search).

The division specification determines how DIRECT subdivides each subregion of the search space. If
division is set to major_dimension, then the dimension representing the longest edge of the subregion is
subdivided (this is the default). If division is set to all_dimensions, then all dimensions are simultane-
ously subdivided.

Each subregion considered by DIRECT has a size, which corresponds to the longest diagonal of the subregion.
The global_balance_parameter controls how much global search is performed by only allowing a subre-
gion to be subdivided if the size of the subregion divided by the size of the largest subregion is at least global_-
balance_parameter. Intuitively, this forces large subregions to be subdivided before the smallest subregions
are refined. The local_balance_parameter provides a tolerance for estimating whether the smallest sub-
region can provide a sufficient decrease to be worth subdividing; the default value is a small value that is suitable
for most applications.

DIRECT can be terminated with the standard max_function_evaluations and solution_target
specifications. Additionally, the max_boxsize_limit specification terminates DIRECT if the size of the
largest subregion falls below this threshold, and the min_boxsize_limit specification terminates DIRECT
if the size of the smallest subregion falls below this threshold. In practice, this latter specification is likely to be
more effective at limiting DIRECT’s search.

Table 5.11 summarizes the DIRECT specification.

Description Keyword Associated Data Status Default
DIRECT method coliny_-

direct
none Required group N/A

Box subdivision
approach

division major_-
dimension |
all_-
dimensions

Optional group major_-
dimension

Global search
balancing
parameter

global_-
balance_-
parameter

real Optional 0.0

Local search
balancing
parameter

local_-
balance_-
parameter

real Optional 1.e-8

Maximum boxsize
limit

max_-
boxsize_-
limit

real Optional 0.0

Minimum boxsize
limit

min_-
boxsize_-
limit

real Optional 0.0001

Constraint penalty constraint_-
penalty

real Optional 1000.0

Table 5.11: Specification detail for the DIRECT method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

72 Method Commands

Evolutionary Algorithms DAKOTA currently provides several variants of evolutionary algorithms, invoked
through the coliny_ea group specification.

The basic steps of an evolutionary algorithm are depicted in Figure 5.2.

Figure 5.2: Depiction of evolutionary algorithm

They can be enumerated as follows:

1. Select an initial population randomly and perform function evaluations on these individuals

2. Perform selection for parents based on relative fitness

3. Apply crossover and mutation to generate new_solutions_generated new individuals from the se-
lected parents

• Apply crossover with a fixed probability from two selected parents

• If crossover is applied, apply mutation to the newly generated individual with a fixed probability

• If crossover is not applied, apply mutation with a fixed probability to a single selected parent

4. Perform function evaluations on the new individuals

5. Perform replacement to determine the new population

6. Return to step 2 and continue the algorithm until convergence criteria are satisfied or iteration limits are
exceeded

Table 5.12 provides the specification detail for the controls for seeding the method, initializing a population, and
for selecting and replacing population members.

The random seed control provides a mechanism for making a stochastic optimization repeatable. That is, the use
of the same random seed in identical studies will generate identical results. The population_size control
specifies how many individuals will comprise the EA’s population.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 73

Description Keyword Associated Data Status Default
EA selection coliny_ea none Required group N/A
Random seed seed integer Optional randomly

generated seed
Number of
population
members

population_-
size

integer Optional 50

Initialization type
initialization_-
type

simple_-
random |
unique_-
random |
flat_file

Required unique_-
random

Fitness type fitness_type linear_rank |
merit_-
function

Optional linear_rank

Replacement type
replacement_-
type

random | chc |
elitist

Optional group elitist = 1

Random
replacement type

random integer Required N/A

CHC replacement
type

chc integer Required N/A

Elitist replacement
type

elitist integer Required N/A

New solutions
generated

new_-
solutions_-
generated

integer Optional population_-
size -
replacement_-
size

Table 5.12: Specification detail for the Coliny EA method dependent controls: seed, initialization, selection, and
replacement

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

74 Method Commands

The initialization_type defines the type of initialization for the population of the EA. There are three
types: simple_random, unique_random, and flat_file. simple_random creates initial solutions
with random variable values according to a uniform random number distribution. It gives no consideration to
any previously generated designs. The number of designs is specified by the population_size. unique_-
random is the same as simple_random, except that when a new solution is generated, it is checked against
the rest of the solutions. If it duplicates any of them, it is rejected. flat_file allows the initial population to
be read from a flat file. If flat_file is specified, a file name must be given.

The fitness_type controls how strongly differences in "fitness" (i.e., the objective function) are weighted in
the process of selecting "parents" for crossover:

• the linear_rank setting uses a linear scaling of probability of selection based on the rank order of each
individual’s objective function within the population

• the merit_function setting uses a proportional scaling of probability of selection based on the relative
value of each individual’s objective function within the population

The replacement_type controls how current populations and newly generated individuals are combined to
create a new population. Each of the replacement_type selections accepts an integer value, which is referred
to below and in Table 5.12 as the replacement_size:

• The random setting creates a new population using (a) replacement_size randomly selected indi-
viduals from the current population, and (b) population_size - replacement_size individuals
randomly selected from among the newly generated individuals (the number of which is optionally spec-
ified using new_solutions_generated) that are created for each generation (using the selection,
crossover, and mutation procedures).

• The chc setting creates a new population using (a) the replacement_size best individuals from the
combination of the current population and the newly generated individuals, and (b) population_size -
replacement_size individuals randomly selected from among the remaining individuals in this com-
bined pool. The chc setting is the preferred selection for many engineering problems.

• The elitist (default) setting creates a new population using (a) the replacement_size best indi-
viduals from the current population, (b) and population_size - replacement_size individuals
randomly selected from the newly generated individuals. It is possible in this case to lose a good solution
from the newly generated individuals if it is not randomly selected for replacement; however, the default
new_solutions_generated value is set such that the entire set of newly generated individuals will
be selected for replacement.

Table 5.13 show the controls in the EA method associated with crossover and mutation.

The crossover_type controls what approach is employed for combining parent genetic information to create
offspring, and the crossover_rate specifies the probability of a crossover operation being performed to
generate a new offspring. The Coliny EA method supports three forms of crossover, two_point, blend,
and uniform, which generate a new individual through combinations of two parent individuals. Two-point
crossover divides each parent into three regions, where offspring are created from the combination of the middle
region from one parent and the end regions from the other parent. Since the Coliny EA does not utilize bit
representations of variable values, the crossover points only occur on coordinate boundaries, never within the
bits of a particular coordinate. Uniform crossover creates offspring through random combination of coordinates

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 75

Description Keyword Associated Data Status Default
Crossover type crossover_-

type
two_point |
blend |
uniform

Optional group two_point

Crossover rate crossover_-
rate

real Optional 0.8

Mutation type mutation_-
type

replace_-
uniform |
offset_-
normal |
offset_-
cauchy |
offset_-
uniform

Optional group offset_-
normal

Mutation scale mutation_-
scale

real Optional 0.1

Mutation range mutation_-
range

integer Optional 1

Mutation
dimension ratio

dimension_-
ratio

real Optional 1.0

Mutation rate mutation_-
rate

real Optional 1.0

Non-adaptive
mutation flag

non_adaptive none Optional Adaptive mutation

Table 5.13: Specification detail for the Coliny EA method: crossover and mutation

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

76 Method Commands

from the two parents. Blend crossover generates a new individual randomly along the multidimensional vector
connecting the two parents.

The mutation_type controls what approach is employed in randomly modifying continuous design variables
within the EA population. Each of the mutation methods generates coordinate-wise changes to individuals, usu-
ally by adding a random variable to a given coordinate value (an "offset" mutation), but also by replacing a given
coordinate value with a random variable (a "replace" mutation). Discrete design variables are always mutated
using the offset_uniform method. The mutation_rate controls the probability of mutation being per-
formed on an individual, both for new individuals generated by crossover (if crossover occurs) and for individuals
from the existing population. When mutation is performed, all dimensions of each individual are mutated. The
mutation_scale specifies a scale factor which scales continuous mutation offsets; this is a fraction of the
total range of each dimension, so mutation_scale is a relative value between 0 and 1. The mutation_-
range is used to control offset_uniform mutation used for discrete parameters. The replacement discrete
value is the original value plus or minus an integer value up to mutation_range. The offset_normal,
offset_cauchy, and offset_uniformmutation types are "offset" mutations in that they add a 0-mean ran-
dom variable with a normal, cauchy, or uniform distribution, respectively, to the existing coordinate value. These
offsets are limited in magnitude by mutation_scale. The replace_uniform mutation type is not limited
by mutation_scale; rather it generates a replacement value for a coordinate using a uniformly distributed
value over the total range for that coordinate.

The Coliny EA method uses self-adaptive mutation, which modifies the mutation scale dynamically. This mech-
anism is borrowed from EAs like evolution strategies. The non_adaptive flag can be used to deactivate the
self-adaptation, which may facilitate a more global search.

Pattern Search Pattern search techniques are nongradient-based optimization methods which use a set of offsets
from the current iterate to locate improved points in the design space. The Coliny pattern search technique is
invoked using a coliny_pattern_search group specification, which includes a variety of specification
components.

Traditional pattern search methods search with a fixed pattern of search directions to try to find improve-
ments to the current iterate. The Coliny pattern search methods generalize this simple algorithmic strategy
to enable control of how the search pattern is adapted, as well as how each search pattern is evaluated. The
stochastic and synchronization specifications denote how the the trial points are evaluated. The
stochastic specification indicates that the trial points are considered in a random order. For parallel pat-
tern search, synchronization dictates whether the evaluations are scheduled using a blocking scheduler
or a nonblocking scheduler (i.e., Model::synchronize() or Model::synchronize_nowait(), respectively). In
the blocking case, all points in the pattern are evaluated (in parallel), and if the best of these trial points is an
improving point, then it becomes the next iterate. These runs are reproducible, assuming use of the same seed
in the stochastic case. In the nonblocking case, all points in the pattern may not be evaluated, since the
first improving point found becomes the next iterate. Since the algorithm steps will be subject to parallel timing
variabilities, these runs will not generally be repeatable. The synchronization specification has similar con-
notations for sequential pattern search. If blocking is specified, then each sequential iteration terminates after
all trial points have been considered, and if nonblocking is specified, then each sequential iteration terminates
after the first improving trial point is evaluated.

The particular form of the search pattern is controlled by the pattern_basis specification. If pattern_-
basis is coordinate basis, then the pattern search uses a plus and minus offset in each coordinate direction,
for a total of 2n function evaluations in the pattern. This case is depicted in Figure 5.3 for three coordinate
dimensions.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 77

Figure 5.3: Depiction of coordinate pattern search algorithm

If pattern_basis is simplex, then pattern search uses a minimal positive basis simplex for the parameter
space, for a total of n+1 function evaluations in the pattern. Note that the simplex pattern basis can be used
for unbounded problems only. The total_pattern_size specification can be used to augment the basic
coordinate and simplex patterns with additional function evaluations, and is particularly useful for parallel
load balancing. For example, if some function evaluations in the pattern are dropped due to duplication or bound
constraint interaction, then the total_pattern_size specification instructs the algorithm to generate new
offsets to bring the total number of evaluations up to this consistent total.

The exploratory_moves specification controls how the search pattern is adapted. (The search pattern can be
adapted after an improving trial point is found, or after all trial points in a search pattern have been found to be
unimproving points.) The following exploratory moves selections are supported by Coliny:

• The basic_pattern case is the simple pattern search approach, which uses the same pattern in each
iteration.

• The multi_step case examines each trial step in the pattern in turn. If a successful step is found, the
pattern search continues examining trial steps about this new point. In this manner, the effects of multiple
successful steps are cumulative within a single iteration. This option does not support any parallelism and
will result in a serial pattern search.

• The adaptive_pattern case invokes a pattern search technique that adaptively rescales the different

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

78 Method Commands

search directions to maximize the number of redundant function evaluations. See [Hart et al., 2001] for
details of this method. In preliminary experiments, this method had more robust performance than the
standard basic_pattern case in serial tests. This option supports a limited degree of parallelism. After
successful iterations (where the step length is not contracted), a parallel search will be performed. After
unsuccessful iterations (where the step length is contracted), only a single evaluation is performed.

The initial_delta and threshold_delta specifications provide the initial offset size and the threshold
size at which to terminate the algorithm. For any dimension that has both upper and lower bounds, this step length
will be internally rescaled to provide search steps of length initial_delta ∗ range. This rescaling does not
occur for other dimensions, so search steps in those directions have length initial_delta.

In general, pattern search methods can expand and contract their step lengths. Coliny pattern search methods
contract the step length by the value contraction_factor, and they expand the step length by the value
(1/contraction_factor). The expand_after_success control specifies how many successful objective func-
tion improvements must occur with a specific step length prior to expansion of the step length, whereas the
no_expansion flag instructs the algorithm to forgo pattern expansion altogether.

Finally, constraint infeasibility can be managed in a somewhat more sophisticated manner than the simple
weighted penalty function. If the constant_penalty specification is used, then the simple weighted penalty
scheme described above is used. Otherwise, the constraint penalty is adapted to the value constraint_-
penalty/L, where L is the the smallest step length used so far.

Table 5.14 and Table 5.15 provide the specification detail for the Coliny pattern search method and its method
dependent controls.

Description Keyword Associated Data Status Default
Coliny pattern
search method

coliny_-
pattern_-
search

none Required group N/A

Stochastic pattern
search

stochastic none Optional group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset value initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

Constraint penalty constraint_-
penalty

real Optional 1.0

Control of
dynamic penalty

constant_-
penalty

none Optional algorithm
dynamically adapts
the constraint
penalty

Table 5.14: Specification detail for the Coliny pattern search method: randomization, delta, and constraint con-
trols

Solis-Wets DAKOTA’s implementation of Coliny also contains the Solis-Wets algorithm. The Solis-Wets
method is a simple greedy local search heuristic for continuous parameter spaces. Solis-Wets generates trial

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 79

Description Keyword Associated Data Status Default
Pattern basis
selection

pattern_-
basis

coordinate |
simplex

Optional coordinate

Total number of
points in pattern

total_-
pattern_size

integer Optional no augmentation of
basic pattern

No expansion flag no_expansion none Optional algorithm may
expand pattern size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 1

Pattern contraction
factor contraction_-

factor

real Optional 0.5

Evaluation
synchronization synchronization

blocking |
nonblocking

Optional nonblocking

Exploratory moves
selection exploratory_-

moves

basic_-
pattern |
multi_step |
adaptive_-
pattern

Optional basic_-
pattern

Table 5.15: Specification detail for the Coliny pattern search method: pattern controls

points using a multivariate normal distribution, and unsuccessful trial points are reflected about the current point
to find a descent direction. This algorithm is inherently serial and will not utilize any parallelism. Table 5.16
provides the specification detail for this method and its method dependent controls.

These specifications have the same meaning as corresponding specifications for coliny_pattern_search.
In particular, coliny_solis_wets supports dynamic rescaling of the step length, and dynamic rescaling of
the constraint penalty. The only new specification is contract_after_failure, which specifies the number
of unsuccessful cycles which must occur with a specific delta prior to contraction of the delta.

5.4.8 NCSU Methods

North Carolina State University (NCSU) has an implementation of the DIRECT algorithm (DIviding RECTan-
gles algorithm that is outlined in the Coliny method section above). This version is documented in [Gablonsky,
2001.] We have found that the NCSU DIRECT implementation works better and is more robust for some prob-
lems than coliny_direct. Currently, we maintain both versions of DIRECT in DAKOTA; in the future, we
may deprecate one. The NCSU DIRECT method is selected with ncsu_direct. We have tried to maintain
consistency between the keywords in COLINY and NCSU implementation of DIRECT, but the algorithms have
different parameters, so the keywords sometimes have slightly different meaning.

NCSU method independent controls The method independent controls for max_iterations and max_-
function_evaluations limit the number of iterations and the number of function evaluations that can be
performed during an NCSU DIRECT optimization. This methods will always strictly respect the number of
iterations, but may slightly exceed the number of function evaluations, as it will always explore all sub-rectangles
at the current level.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

80 Method Commands

Description Keyword Associated Data Status Default
Coliny Solis-Wets
method

coliny_-
solis_wets

none Required group N/A

Random seed for
stochastic pattern
search

seed integer Optional randomly
generated seed

Initial offset value initial_-
delta

real Required N/A

Threshold for
offset values

threshold_-
delta

real Required N/A

No expansion flag no_expansion none Optional algorithm may
expand pattern size

Number of
consecutive
improvements
before expansion

expand_-
after_-
success

integer Optional 5

Number of
consecutive
failures before
contraction

contract_-
after_-
failure

integer Optional 3

Pattern contraction
factor contraction_-

factor

real Optional 0.5

Constraint penalty constraint_-
penalty

real Optional 1.0

Control of
dynamic penalty

constant_-
penalty

none Optional algorithm
dynamically adapts
the constraint
penalty

Table 5.16: Specification detail for the Coliny Solis-Wets method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 81

NCSU method dependent controls There are four specification controls affecting NCSU DIRECT:
solution_target, convergence_tolerance, min_boxsize_limit, and volume_boxsize_-
limit. The solution target specifies a goal toward which the optimizer should track. When solution_-
target is specified, convergence_tolerance specifies a percent error on the optimization. This is used
for test problems, when the true global minimum is known (call it solution_target := fglobal). Then, the
optimization terminates when 100(f_min-fglobal)/max(1,abs(fglobal) < convergence_tolerance. The default for
fglobal is -1.0e100 and the default for convergence tolerance is as given above.

min_boxsize_limit is a setting that terminates the optimization when the measure of a hyperrectangle S
with f(c(S)) = fmin is less than min_boxsize_limit. volume_boxsize_limit is a setting that terminates the
optimization when the volume of a hyperrectangle S with f(c(S)) = fmin is less than volume_boxsize_limit percent
of the original hyperrectangle. Basically, volume_boxsize_limit stops the optimization when the volume of the
particular rectangle which has fmin is less than a certain percentage of the whole volume. min_boxsize_-
limit uses an arbitrary measure to stop the optimization. The keywords for NCSU DIRECT are described in
Table 5.17 below.

Description Keyword Associated Data Status Default
Solution Target solution_-

target
real Optional 0

Min boxsize limit min_-
boxsize_-
limit

real in [0,1] Optional 1.0e-4

Volume boxsize
limit

vol_-
boxsize_-
limit

real in [0,1] Optional 1.0e-6

Table 5.17: Specification detail for the NCSU DIRECT method

5.4.9 JEGA Methods

The JEGA library [Eddy and Lewis, 2001] contains two global optimization methods. The first is a Multi-objective
Genetic Algorithm (MOGA) which performs Pareto optimization. The second is a Single-objective Genetic Al-
gorithm (SOGA) which performs optimization on a single objective function. Both methods support general
constraints and a mixture of real and discrete variables. The JEGA library was written by John Eddy, currently
a member of the technical staff in the System Readiness and Sustainment Technologies department at Sandia
National Laboratories in Albuquerque. These algorithms are accessed as moga and soga within DAKOTA.
DAKOTA provides access to the JEGA library through the JEGAOptimizer class.

JEGA method independent controls JEGA utilizes the max_iterations and max_function_-
evaluations method independent controls to provide integer limits for the maximum number of generations
and function evaluations, respectively. Note that currently, the DAKOTA default for max_iterations is 100
and for max_function_evaluations is 1000. These are the default settings that will be used to "stop" the
JEGA algorithms, unless some specific convergence criteria are set (see Tables 5.20 and 5.21 below).

Beginning with v2.0, JEGA also utilizes the output method independent control to vary the amount of informa-
tion presented to the user during execution.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

82 Method Commands

JEGA method dependent controls The JEGA library currently provides two types of genetic algorithms
(GAs): a multi-objective genetic algorithm (moga), and a single- objective genetic algorithm (soga). Both
of these GAs can take real-valued inputs, integer-valued inputs, or a mixture of real and integer-valued inputs.
"Real-valued" and "integer-valued" refer to the use of continuous or discrete variable domains, respectively (the
response data are real-valued in all cases).

The basic steps of the genetic algorithm are as follows:

1. Initialize the population (by randomly generating population members with or without duplicates allowed,
or by flat-file initialization)

2. Evaluate the initial population members (calculate the values of the objective function(s) and constraints
for each population member)

3. Perform crossover (several crossover types are available)

4. Perform mutation (several mutation types are available)

5. Evaluate the new population members.

6. Assess the fitness of each member in the population. There are a number of ways to evaluate the fit-
ness of the members of the populations. Choice of fitness assessor operators is strongly related to the
type of replacement algorithm being used and can have a profound effect on the solutions selected for
the next generation. For example, if using MOGA, the available assessors are the layer_rank and
domination_count fitness assessors. If using either of these, it is strongly recommended that you
use the replacement_type called the below_limit selector as well (although the roulette wheel
selectors can also be used). The functionality of the domination_count selector of JEGA v1.0 can now
be achieved using the domination_count fitness assessor and below_limit replacement selector
together. If using SOGA, there are a number of possible combinations of fitness assessors and selectors.

7. Replace the population with members selected to continue in the next generation. The pool of poten-
tial members is the current population and the current set of offspring. The replacement_type of
roulette_wheel or unique_roulette_wheel may be used either with MOGA or SOGA prob-
lems however they are not recommended for use with MOGA. Given that the only two fitness assessors for
MOGA are the layer_rank and domination_count, the recommended selector is the below_-
limit selector. The below_limit replacement will only keep designs that are dominated by fewer than
a limiting number of other designs. The replacement_type of favor_feasible is specific to a
SOGA. This replacement operator will always prefer a more feasible design to a less feasible one. Beyond
that, it favors solutions based on an assigned fitness value which must have been installed by the weighted
sum only fitness assessor (see the discussion below).

8. Apply niche pressure to the population. This step is specific to the MOGA and is new as of JEGA v2.0.
Technically, the step is carried out during runs of the SOGA but only the null_niching operator is
available for use with SOGA. In MOGA, the radial or distance operators can be used. The purpose
of niching is to encourage differentiation along the Pareto frontier and thus a more even and uniform sam-
pling. The radial nicher takes information input from the user to compute a minimum allowable distance
between designs in the performance space and acts as a secondary selection operator whereby it enforces
this minimum distance. The distance nicher requires that solutions must be separated from other solutions
by a minimum distance in each dimension (vs. Euclidean distance for the radial niching). After niching
is complete, all designs in the population will be at least the minimum distance from one another in all
directions.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 83

9. Test for convergence. There are two aspects to convergence that must be considered. The first is stop-
ping criteria. A stopping criteria dictates some sort of limit on the algorithm that is independent of its
performance. Examples of stopping criteria available for use with JEGA are the max_iterations and
max_function_evaluations inputs. All JEGA convergers respect these stopping criteria in addition
to anything else that they do.

The second aspect to convergence involves repeated assessment of the algorithms progress in solving
the problem. In JEGA v1.0, the SOGA fitness tracker convergers (best_fitness_tracker and
average_fitness_tracker) performed this function by asserting that the fitness values (either best
or average) of the population continue to improve. There was no such operator for the MOGA. As of JEGA
v2.0, the same fitness tracker convergers exist for use with SOGA and there is now a converger available for
use with the MOGA. The MOGA converger (metric_tracker) operates by tracking various changes in
the non-dominated frontier from generation to generation. When the changes occurring over a user specified
number of generations fall below a user specified threshold, the algorithm stops.

10. Peroform post processing. This step is new as of JEGA v2.1. The purpose of this operation is to perform
any needed data manipulations on the final solution deemed necessary. Currently the the distance_-
postprocessor is the only one other than the null_postprocessor. The distance_-
postprocessor is specifically for use with the MOGA and reduces the final solution set size such
that a minimum distance in each direction exists between any two designs.

There are many controls which can be used for both MOGA and SOGA methods. These include among others the
random seed, initialization types, crossover and mutation types, and some replacement types. These are described
in Tables 5.18 and 5.19 below.

The seed control defines the starting seed for the random number generator. The algorithm uses random numbers
heavily but a specification of a random seed will cause the algorithm to run identically from one trial to the next so
long as all other input specifications remain the same. New as of JEGA v2.0 is the introduction of the log_file
specification. JEGA now uses a logging library to output messages and status to the user. JEGA can be configured
at build time to log to both the console window and a text file, one or the other, or neither. The log_file input
is a string name of a file into which to log. If the build was configured without file logging in JEGA, this input
is ignored. If file logging is enabled and no log_file is specified, the default file name of JEGAGlobal.log is
used. Also new to JEGA v2.0 is the introduction of the print_each_pop specification. It serves as a flag and
if supplied, the population at each generation will be printed to a file named "population<GEN#>.dat" where
<GEN#> is the number of the current generation.

The initialization_type defines the type of initialization for the GA. There are three types: simple_-
random, unique_random, and flat_file. simple_random creates initial solutions with random vari-
able values according to a uniform random number distribution. It gives no consideration to any previously
generated designs. The number of designs is specified by the population_size. unique_random is the
same as simple_random, except that when a new solution is generated, it is checked against the rest of the
solutions. If it duplicates any of them, it is rejected. flat_file allows the initial population to be read from
a flat file. If flat_file is specified, a file name must be given. Variables can be delimited in the flat file in
any way you see fit with a few exceptions. The delimiter must be the same on any given line of input with the
exception of leading and trailing whitespace. So a line could look like: 1.1, 2.2 ,3.3 for example but could not
look like: 1.1, 2.2 3.3. The delimiter can vary from line to line within the file which can be useful if data from
multiple sources is pasted into the same input file. The delimiter can be any string that does not contain any of
the characters .+-dDeE or any of the digits 0-9. The input will be read until the end of the file. The algorithm will
discard any configurations for which it was unable to retrieve at least the number of design variables. The objec-
tive and constraint entries are not required but if ALL are present, they will be recorded and the design will be
tagged as evaluated so that evaluators may choose not to re-evaluate them. Setting the size for this initializer has
the effect of requiring a minimum number of designs to create. If this minimum number has not been created once

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

84 Method Commands

the files are all read, the rest are created using the unique_random initializer and then the simple_random
initializer if necessary.

Note that the population_size only sets the size of the initial population. The population size may vary in
the JEGA methods according to the type of operators chosen for a particular optimization run.

There are many crossover types available. multi_point_binary crossover requires an integer number, N, of
crossover points. This crossover type performs a bit switching crossover at N crossover points in the binary en-
coded genome of two designs. Thus, crossover may occur at any point along a solution chromosome (in the middle
of a gene representing a design variable, for example). multi_point_parameterized_binary crossover
is similar in that it performs a bit switching crossover routine at N crossover points. However, this crossover type
performs crossover on each design variable individually. So the individual chromosomes are crossed at N loca-
tions. multi_point_real crossover performs a variable switching crossover routing at N crossover points
in the real real valued genome of two designs. In this scheme, crossover only occurs between design variables
(chromosomes). Note that the standard solution chromosome representation in the JEGA algorithm is real en-
coded and can handle integer or real design variables. For any crossover types that use a binary representation,
real variables are converted to long integers by multiplying the real number by 10∧6 and then truncating. Note
that this assumes a precision of only six decimal places. Discrete variables are represented as integers (indices
within a list of possible values) within the algorithm and thus require no special treatment by the binary operators.

The final crossover type is shuffle_random. This crossover type performs crossover by choosing design
variables at random from a specified number of parents enough times that the requested number of children are
produced. For example, consider the case of 3 parents producing 2 children. This operator would go through and
for each design variable, select one of the parents as the donor for the child. So it creates a random shuffle of the
parent design variable values. The relative numbers of children and parents are controllable to allow for as much
mixing as desired. The more parents involved, the less likely that the children will wind up exact duplicates of the
parents.

All crossover types take a crossover_rate. The crossover rate is used to calculate the number of crossover
operations that take place. The number of crossovers is equal to the rate ∗ population_size.

There are five mutation types allowed. replace_uniform introduces random variation by first randomly
choosing a design variable of a randomly selected design and reassigning it to a random valid value for that
variable. No consideration of the current value is given when determining the new value. All mutation types have
a mutation_rate. The number of mutations for the replace_uniform mutator is the product of the mutation_-
rate and the population_size.

The bit_random mutator introduces random variation by first converting a randomly chosen variable of a
randomly chosen design into a binary string. It then flips a randomly chosen bit in the string from a 1 to a 0 or
visa versa. In this mutation scheme, the resulting value has more probability of being similar to the original value.
The number of mutations performed is the product of the mutation_rate, the number of design variables, and the
population size.

The offset mutators all act by adding an "offset" random amount to a variable value. The random amount has
a mean of zero in all cases. The offset_normal mutator introduces random variation by adding a Gaussian
random amount to a variable value. The random amount has a standard deviation dependent on the mutation_-
scale. The mutation_scale is a fraction in the range [0, 1] and is meant to help control the amount
of variation that takes place when a variable is mutated. mutation_scale is multiplied by the range of the
variable being mutated to serve as standard deviation. offset_cauchy is similar to offset_normal, except
that a Cauchy random variable is added to the variable being mutated. The mutation_scale also defines the
standard deviation for this mutator. Finally, offset_uniform adds a uniform random amount to the variable
value. For the offset_uniform mutator, the mutation_scale is interpreted as a fraction of the total range
of the variable. The range of possible deviation amounts is +/- 1/2 ∗ (mutation_scale ∗ variable range). The

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 85

number of mutations for all offset mutators is defined as the product of mutation_rate and population_-
size.

As of JEGA v2.0, all replacement types are common to both MOGA and SOGA. They include the roulette_-
wheel, unique_roulette_wheel, elitist, and below_limit selectors. In roulette_wheel replace-
ment, each design is conceptually allotted a portion of a wheel proportional to its fitness relative to the fitnesses
of the other Designs. Then, portions of the wheel are chosen at random and the design occupying those portions
are duplicated into the next population. Those Designs allotted larger portions of the wheel are more likely to
be selected (potentially many times). unique_roulette_wheel replacement is the same as roulette_-
wheel replacement, with the exception that a design may only be selected once. The below_limit selector
attempts to keep all designs for which the negated fitness is below a certain limit. The values are negated to keep
with the convention that higher fitness is better. The inputs to the below_limit selector are the limit as a real
value, and a shrinkage_percentage as a real value. The shrinkage_percentage defines the mini-
mum amount of selections that will take place if enough designs are available. It is interpreted as a percentage of
the population size that must go on to the subsequent generation. To enforce this, below_limit makes all the
selections it would make anyway and if that is not enough, it takes the remaining that it needs from the best of
what is left (effectively raising its limit as far as it must to get the minimum number of selections). It continues
until it has made enough selections. The shrinkage_percentage is designed to prevent extreme decreases
in the population size at any given generation, and thus prevent a big loss of genetic diversity in a very short time.
Without a shrinkage limit, a small group of "super" designs may appear and quickly cull the population down to
a size on the order of the limiting value. In this case, all the diversity of the population is lost and it is expensive
to re-diversify and spread the population. The elitist selector simply chooses the required number of designs
taking the most fit. For example, if 100 selections are requested, then the top 100 designs as ranked by fitness will
be selected and the remaining will be discarded.

Multi-objective Evolutionary Algorithms The specification for controls specific to Multi-objective Evolution-
ary algorithms are described here. These controls will be appropriate to use if the user has specified moga as the
method.

The initialization, crossover, and mutation controls were all described in the preceding section. There are no
MOGA specific aspects to these controls. The fitness_type for a MOGA may be domination_count or
layer_rank. Both have been specifically designed to avoid problems with aggregating and scaling objective
function values and transforming them into a single objective. Instead, the domination_count fitness assessor
works by ordering population members by the negative of the number of designs that dominate them. The values
are negated in keeping with the convention that higher fitness is better. The layer_rank fitness assessor works
by assigning all non-dominated designs a layer of 0, then from what remains, assigning all the non-dominated a
layer of 1, and so on until all designs have been assigned a layer. Again, the values are negated for the higher-
is-better fitness convention. Use of the below_limit selector with the domination_count fitness assessor
has the effect of keeping all designs that are dominated by fewer then a limiting number of other designs subject
to the shrinkage limit. Using it with the layer_rank fitness assessor has the effect of keeping all those designs
whose layer is below a certain threshold again subject to the shrinkage limit.

New as of JEGA v2.0 is the introduction of niche pressure operators. These operators are meant primarily for
use with the moga. The job of a niche pressure operator is to encourage diversity along the Pareto frontier as the
algorithm runs. This is typically accomplished by discouraging clustering of design points in the performance
space. In JEGA, the application of niche pressure occurs as a secondary selection operation. The nicher is given
a chance to perform a pre-selection operation prior to the operation of the selection (replacement) operator, and is
then called to perform niching on the set of designs that were selected by the selection operator.

Currently, the only niche pressure operators available are the radial nicher and the distance nicher. The
radial niche pressure applicator works by enforcing a minimum Euclidean distance between designs in the perfor-

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

86 Method Commands

Description Keyword Associated Data Status Default
GA Method moga | soga none Required group N/A
Random seed seed integer Optional Time based seed
Log file log_file string Optional JEGAGlobal.log
Number of
population
members

population_-
size

integer Optional 50

Population output print_each_-
pop

none Optional No printing

Output verbosity output silent | quiet
| verbose |
debug

Optional normal

Initialization type
initialization_-
type

simple_-
random |
unique_-
random |
flat_file

Optimal unique_random

Mutation type mutation_-
type

replace_-
uniform |
bit_random |
offset_-
cauchy |
offset_-
uniform |
offset_-
normal

Optional group replace_uniform

Mutation scale mutation_-
scale

real Optional 0.15

Mutation rate mutation_-
rate

real Optional 0.08

Replacement type
replacement_-
type

below_limit |
roulette_-
wheel |
unique_-
roulette_-
wheel |
elitist

Required group None

Below limit
selection

below_limit real Optional 6

Shrinkage
percentage in
below limit
selection

shrinkage_-
percentage

real Optional 0.9

Table 5.18: Specification detail for JEGA method dependent controls: seed, output, initialization, mutation, and
replacement

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 87

Description Keyword Associated Data Status Default
Crossover type crossover_-

type
multi_-
point_binary |
multi_-
point_-
parameterized_-
binary |
multi_-
point_real |
shuffle_-
random

Optional group shuffle_-
random

Multi point binary
crossover

multi_-
point_binary

integer Required N/A

Multi point
parameterized
binary crossover

multi_-
point_-
parameterized_-
binary

integer Required N/A

Multi point real
crossover

multi_-
point_real

integer Required N/A

Random shuffle
crossover

shuffle_-
random

num_parents,
num_-
offspring

Required N/A

Number of parents
in random shuffle
crossover

num_parents integer optional 2

Number of
offspring in
random shuffle
crossover

num_-
offspring

integer optional 2

Crossover rate crossover_-
rate

real optional (applies to
all crossover types)

0.8

Table 5.19: Specification detail for JEGA method dependent controls: crossover

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

88 Method Commands

mance space at each generation. The algorithm proceeds by starting at the (or one of the) extreme designs along
objective dimension 0 and marching through the population removing all designs that are too close to the current
design. One exception to the rule is that the algorithm will never remove an extreme design which is defined as
a design that is maximal or minimal in all but 1 objective dimension (for a classical 2 objective problem, the ex-
treme designs are those at the tips of the non-dominated frontier). The distance nicher enforces a minimimum
distance in each dimension.

The designs that are removed by the nicher are not discarded. They are buffered and re-inserted into the population
during the next pre-selection operation. This way, the selector is still the only operator that discards designs and
the algorithm will not waste time "re-filling" gaps created by the nicher.

The radial nicher requires as input a vector of fractions with length equal to the number of objectives. The
elements of the vector are interpreted as percentages of the non-dominated range for each objective defining
a minimum distance to all other designs. All values should be in the range (0, 1). The minimum allowable
distance between any two designs in the performance space is the Euclidian (simple square-root-sum-of-squares
calculation) distance defined by these percentages. The distance nicher has a similar input vector requirement,
only the distance is the minimum distance in each dimension.

Also new as of JEGA v2.0 is the introduction of the MOGA specific metric_tracker converger. This con-
verger is conceptually similar to the best and average fitness tracker convergers in that it tracks the progress of
the population over a certain number of generations and stops when the progress falls below a certain threshold.
The implementation is quite different however. The metric_tracker converger tracks 3 metrics specific to
the non-dominated frontier from generation to generation. All 3 of these metrics are computed as percent changes
between the generations. In order to compute these metrics, the converger stores a duplicate of the non-dominated
frontier at each generation for comparison to the non-dominated frontier of the next generation.

The first metric is one that indicates how the expanse of the frontier is changing. The expanse along a given ob-
jective is defined by the range of values existing within the non-dominated set. The expansion metric is computed
by tracking the extremes of the non-dominated frontier from one generation to the next. Any movement of the
extreme values is noticed and the maximum percentage movement is computed as:

Em = max over j of abs((range(j, i) - range(j, i-1)) / range(j, i-1)) j=1,nof

where Em is the max expansion metric, j is the objective function index, i is the current generation number, and
nof is the total number of objectives. The range is the difference between the largest value along an objective and
the smallest when considering only non-dominated designs.

The second metric monitors changes in the density of the non-dominated set. The density metric is computed as
the number of non-dominated points divided by the hypervolume of the non-dominated region of space. Therefore,
changes in the density can be caused by changes in the number of non-dominated points or by changes in size of
the non-dominated space or both. The size of the non-dominated space is computed as:

Vps(i) = product over j of range(j, i) j=1,nof

where Vps(i) is the hypervolume of the non-dominated space at generation i and all other terms have the same
meanings as above.

The density of the a given non-dominated space is then:

Dps(i) = Pct(i) / Vps(i)

where Pct(i) is the number of points on the non-dominated frontier at generation i.

The percentage increase in density of the frontier is then calculated as

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.4 Optimization Methods 89

Cd = abs((Dps(i) - Dps(i-1)) / Dps(i-1))

where Cd is the change in density metric.

The final metric is one that monitors the "goodness" of the non-dominated frontier. This metric is computed by
considering each design in the previous population and determining if it is dominated by any designs in the current
population. All that are determined to be dominated are counted. The metric is the ratio of the number that are
dominated to the total number that exist in the previous population.

As mentioned above, each of these metrics is a percentage. The tracker records the largest of these three at
each generation. Once the recorded percentage is below the supplied percent change for the supplied number of
generations consecutively, the algorithm is converged.

The specification for convergence in a moga can either be metric_tracker or can be omitted all together.
If omitted, no convergence algorithm will be used and the algorithm will rely on stopping criteria only. If
metric_tracker is specified, then a percent_change and num_generationsmust be supplied as with
the other metric tracker convergers (average and best fitness trackers). The percent_change is the threshold
beneath which convergence is attained whereby it is compared to the metric value computed as described above.
The num_generations is the number of generations over which the metric value should be tracked. Conver-
gence will be attained if the recorded metric is below percent_change for num_generations consecutive
generations.

The MOGA specific controls are described in Table 5.20 below. Note that MOGA and SOGA create additional
output files during execution. "finaldata.dat" is a file that holds the final set of Pareto optimal solutions after any
post-processing is complete. "discards.dat" holds solutions that were discarded from the population during the
course of evolution. It can often be useful to plot objective function values from these files to visually see the
Pareto front and ensure that finaldata.dat solutions dominate discards.dat solutions. The solutions are written to
these output files in the format "Input1...InputN..Output1...OutputM". If MOGA is used in a hybrid optimization
strategy (which requires one optimal solution from each individual optimization method to be passed to the sub-
sequent optimization method as its starting point), the solution in the Pareto set closest to the "utopia" point is
given as the best solution. This solution is also reported in the DAKOTA output. This "best" solution in the Pareto
set has minimum distance from the utopia point. The utopia point is defined as the point of extreme (best) values
for each objective function. For example, if the Pareto front is bounded by (1,100) and (90,2), then (1,2) is the
utopia point. There will be a point in the Pareto set that has minimum L2-norm distance to this point, for example
(10,10) may be such a point. In SOGA, the solution that minimizes the single objective function is returned as the
best solution. If moga is used in a strategy which may require passing multiple solutions to the next level (such as
the surrogate_based_global method or hybrid strategy), the orthogonal_distance postproces-
sor type may be used to specify the distances between each solution value to winnow down the solutions in the
full Pareto front to a subset which will be passed to the next iteration.

Single-objective Evolutionary Algorithms The specification for controls specific to Single-objective Evolu-
tionary algorithms are described here. These controls will be appropriate to use if the user has specified soga as
the method.

The initialization, crossover, and mutation controls were all described above. There are no SOGA specific
aspects to these controls. The replacement_type for a SOGA may be roulette_wheel, unique_-
roulette_wheel, elitist, or favor_feasible. The favor_feasible replacement type first con-
siders feasibility as a selection criteria. If that does not produce a "winner" then it moves on to considering fitness
value. Because of this, any fitness assessor used with the favor_feasible selector must only account ob-
jectives in the creation of fitness. Therefore, there is such a fitness assessor and it’s use is enforced when the \
favor_feasible selector is chosen. In that case, and if the output level is set high enough, a message will be pre-

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

90 Method Commands

Description Keyword Associated Data Status Default
Fitness type fitness_type layer_rank |

domination_-
count

Required group None

Niche pressure
type

niching_type radial |
distance

Optional group No niche pressure

Niching distance radial |
distance

list of real Optional 0.01 for all
objectives

Convergence type metric_-
tracker

none Optional group Stopping criteria
only

Percent change
limit for
metric_tracker
converger

percent_-
change

real Optional 0.1

Number
generations for
metric_tracker
converger

num_-
generations

integer Optional 10

Post_processor
type postprocessor_-

type

orthogonal_-
distance

Optional No post-processing
of solutions

Post_processor
distance

orthogonal_-
distance

list of real Optional 0.01 for all
objectives

Table 5.20: Specification detail for MOGA method controls

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.5 Least Squares Methods 91

sented indicating that the weighted_sum_only fitness assessor will be used. As of JEGA v2.0 and beyond, the
fitness assessment operator must be specified with SOGA although the merit_function is currently the only
one (note that the weighted_sum_only assessor exists but cannot be selected). The roulette wheel selectors
no longer assume a fitness function. The merit_function fitness assessor uses an exterior penalty function
formulation to penalize infeasible designs. The specification allows the input of a constraint_penalty
which is the multiplier to use on the constraint violations.

The SOGA controls allow two additional convergence types. The convergence_type called average_-
fitness_tracker keeps track of the average fitness in a population. If this average fitness does not change
more than percent_change over some number of generations, num_generations, then the solution is
reported as converged and the algorithm terminates. The best_fitness_trackerworks in a similar manner,
only it tracks the best fitness in the population. Convergence occurs after num_generations has passed and
there has been less than percent_change in the best fitness value. The percent change can be as low as 0% in
which case there must be no change at all over the number of generations. Both also respect the stopping criteria.

The SOGA specific controls are described in Table 5.21 below.

Description Keyword Associated Data Status Default
Fitness type fitness_type merit_-

function
Optional group merit_function

Constraint penalty
in merit function

constraint_-
penalty

real Optional 1.0

Replacement type
replacement_-
type

favor_-
feasible |
unique_-
roulette_-
wheel |
roulette_-
wheel

Required group None

Convergence type
convergence_-
type

best_-
fitness_-
tracker |
average_-
fitness_-
tracker

Optional None

Number of
generations (for
convergence test)

num_-
generations

integer Optional 10

Percent change in
fitness

percent_-
change

real Optional 0.1

Table 5.21: Specification detail for SOGA method controls

5.5 Least Squares Methods

DAKOTA’s least squares branch currently contains three methods for solving nonlinear least squares problems:
NL2SOL, a trust-region method that adaptively chooses between two Hessian approximations (Gauss-Newton and
Gauss-Newton plus a quasi-Newton approximation to the rest of the Hessian), NLSSOL, a sequential quadratic

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

92 Method Commands

programming (SQP) approach that is from the same algorithm family as NPSOL, and Gauss-Newton, which
supplies the Gauss-Newton Hessian approximation to the full-Newton optimizers from OPT++.

The important difference of these algorithms from general-purpose optimization methods is that the response set
is defined by least squares terms, rather than an objective function. Thus, a finer granularity of data is used by
least squares solvers as compared to that used by optimizers. This allows the exploitation of the special structure
provided by a sum of squares objective function. Refer to Least squares terms and constraint functions (least
squares data set) for additional information on the least squares response data set.

5.5.1 NL2SOL Method

NL2SOL is available as nl2sol and addresses unconstrained and bound-constrained problems. It uses a trust-
region method (and thus can be viewed as a generalization of the Levenberg-Marquardt algorithm) and adaptively
chooses between two Hessian approximations, the Gauss-Newton approximation alone and the Gauss-Newton
approximation plus a quasi-Newton approximation to the rest of the Hessian. Even on small-residual problems,
the latter Hessian approximation can be useful when the starting guess is far from the solution. On problems that
are not over-parameterized (i.e., that do not involve more optimization variables than the data support), NL2SOL
usually exhibits fast convergence.

NL2SOL has a variety of internal controls as described in AT&T Bell Labs CS TR 153
(http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz). A number of existing DAKOTA controls
(method independent controls and responses controls) are mapped into these NL2SOL internal controls. In par-
ticular, DAKOTA’s convergence_tolerance, max_iterations, max_function_evaluations,
and fd_gradient_step_size are mapped directly into NL2SOL’s rfctol, mxiter, mxfcal, and
dltfdj controls, respectively. In addition, DAKOTA’s fd_hessian_step_size is mapped into both
delta0 and dltfdc, and DAKOTA’s output verbosity is mapped into NL2SOL’s auxprt and outlev (for
normal/verbose/debug output, NL2SOL prints initial guess, final solution, solution statistics, nonde-
fault values, and changes to the active bound constraint set on every iteration; for quiet output, NL2SOL
prints only the initial guess and final solution; and for silent output, NL2SOL output is suppressed).

Several NL2SOL convergence tolerances are adjusted in response to function_precision, which gives
the relative precision to which responses are computed. These tolerances may also be specified explicitly:
convergence_tolerance (NL2SOL’s rfctol, as mentioned previously) is the relative-function conver-
gence tolerance (on the accuracy desired in the sum-of-squares function); x_conv_tol (NL2SOL’s xctol)
is the X-convergence tolerance (scaled relative accuracy of the solution variables); absolute_conv_tol
(NL2SOL’s afctol) is the absolute function convergence tolerance (stop when half the sum of squares is less
than absolute_conv_tol, which is mainly of interest on zero-residual test problems); singular_conv_-
tol (NL2SOL’s sctol) is the singular convergence tolerance, which works in conjunction with singular_-
radius (NL2SOL’s lmaxs) to test for underdetermined least-squares problems (stop when the relative reduction
yet possible in the sum of squares appears less then singular_conv_tol for steps of scaled length at most
singular_radius); false_conv_tol (NL2SOL’s xftol) is the false-convergence tolerance (stop with
a suspicion of discontinuity when a more favorable stopping test is not satisfied and a step of scaled length at
most false_conv_tol is not accepted). Finally, the initial_trust_radius specification (NL2SOL’s
lmax0) specifies the initial trust region radius for the algorithm.

The internal NL2SOL defaults can be obtained for many of these controls by specifying the value -1. For both
the singular_radius and the initial_trust_radius, this results in the internal use of steps of length
1. For other controls, the internal defaults are often functions of machine epsilon (as limited by function_-
precision). Refer to CS TR 153 for additional details on these formulations.

Whether and how NL2SOL computes and prints a final covariance matrix and regression diagnostics is affected

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://cm.bell-labs.com/cm/cs/cstr/153.ps.gz

5.5 Least Squares Methods 93

by several keywords. covariance (NL2SOL’s covreq) specifies the desired covariance approximation:

• 0 = default = none

• 1 or -1 ==> σ2H−1JT JH−1

• 2 or -2 ==> σ2H−1

• 3 or -3 ==> σ2(JT J)−1

• Negative values ==> estimate the final Hessian H by finite differences of function values only (using fd_-
hessian_step_size)

• Positive values ==> differences of gradients (using fd_hessian_step_size)

When regression_diagnostics (NL2SOL’s rdreq) is specified and a positive-definite final Hessian ap-
proximation H is computed, NL2SOL computes and prints a regression diagnostic vector RD such that if omitting
the i-th observation would cause alpha times the change in the solution that omitting the j-th observation would
cause, then RD[i] = |alpha| RD[j]. The finite-difference step-size tolerance affecting H is fd_hessian_-
step_size (NL2SOL’s delta0 and dltfdc, as mentioned previously).

Table 5.22 provides the specification detail for the NL2SOL method dependent controls.

5.5.2 NLSSOL Method

NLSSOL is available as nlssol_sqp and supports unconstrained, bound-constrained, and generally-
constrained problems. It exploits the structure of a least squares objective function through the periodic use
of Gauss-Newton Hessian approximations to accelerate the SQP algorithm. DAKOTA provides access to the
NLSSOL library through the NLSSOLLeastSq class. The method independent and method dependent controls
are identical to those of NPSOL as described in NPSOL method independent controls and NPSOL method de-
pendent controls.

5.5.3 Gauss-Newton Method

The Gauss-Newton algorithm is available as optpp_g_newton and supports unconstrained, bound-constrained,
and generally-constrained problems. The code for the Gauss-Newton approximation (objective function value,
gradient, and approximate Hessian defined from residual function values and gradients) is provided outside
of OPT++ within SNLLLeastSq::nlf2_evaluator_gn(). When interfaced with the unconstrained, bound-
constrained, and nonlinear interior point full-Newton optimizers from the OPT++ library, it provides a Gauss-
Newton least squares capability which – on zero-residual test problems – can exhibit quadratic convergence rates
near the solution. (Real problems almost never have zero residuals, i.e., perfect fits.)

Mappings for the method independent and dependent controls are the same as for the OPT++ optimization meth-
ods and are as described in OPT++ method independent controls and OPT++ method dependent controls. In
particular, since OPT++ full-Newton optimizers provide the foundation for Gauss-Newton, the specifications
from Table 5.6 are also applicable for optpp_g_newton.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

94 Method Commands

Description Keyword Associated Data Status Default
Relative precision
in least squares
terms

function_-
precision

real Optional 1e-10

Absolute function
convergence
tolerance

absolute_-
conv_tol

real Optional -1. (use NL2SOL
internal default)

Convergence
tolerance for
change in
parameter vector

x_conv_tol real Optional -1. (use NL2SOL
internal default)

Singular
convergence
tolerance

singular_-
conv_tol

real Optional -1. (use NL2SOL
internal default)

Step limit for
sctol

singular_-
radius

real Optional -1. (use NL2SOL
internal default of
1)

False convergence
tolerance

false_conv_-
tol

real Optional -1. (use NL2SOL
internal default)

Initial trust region
radius

initial_-
trust_radius

real Optional -1. (use NL2SOL
internal default of
1)

Covariance
post-processing

covariance integer Optional 0 (no covariance)

Regression
diagnostics
post-processing

regression_-
diagnostics

none Optional no regression
diagnostics

Table 5.22: Specification detail for NL2SOL method dependent controls.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.6 Surrogate-Based Minimization Methods 95

5.6 Surrogate-Based Minimization Methods

In surrogate-based optimization (SBO) and surrogate-based nonlinear least squares (SBNLS), minimization oc-
curs using a set of one or more approximations, defined from a surrogate model, that are built and periodically
updated using data from a "truth" model. The surrogate model can be a global data fit (e.g., regression or inter-
polation of data generated from a design of computer experiments), a multipoint approximation, a local Taylor
Series expansion, or a model hierarchy approximation (e.g., a low-fidelity simulation model), whereas the truth
model involves a high-fidelity simulation model. The goals of surrogate-based methods are to reduce the total
number of truth model simulations and, in the case of global data fit surrogates, to smooth noisy data with an
easily navigated analytic function.

5.6.1 Surrogate-Based Local Method

In the surrogate-based local (SBL) method, a trust region approach is used to manage the minimization process to
maintain acceptable accuracy between the surrogate model and the truth model (by limiting the range over which
the surrogate model is trusted). The process involves a sequence of minimizations performed on the surrogate
model and bounded by the trust region. At the end of each approximate minimization, the candidate optimum
point is validated using the truth model. If sufficient decrease has been obtained in the truth model, the trust region
is re-centered around the candidate optimum point and the trust region will either shrink, expand, or remain the
same size depending on the accuracy with which the surrogate model predicted the truth model decrease. If
sufficient decrease has not been attained, the trust region center is not updated and the entire trust region shrinks
by a user-specified factor. The cycle then repeats with the construction of a new surrogate model, a minimization,
and another test for sufficient decrease in the truth model. This cycle continues until convergence is attained.

The surrogate_based_local method must specify an optimization or least squares sub-method either by
pointer using approx_method_pointer (e.g., ’NLP1’) or by name using approx_method_name (e.g.,
’npsol_sqp’). The former identifies a full sub-method specification for the sub-problem minimizer (which allows
non-default minimizer settings), whereas the latter supports a streamlined specification (that employs default
minimizer settings). For both cases, the surrogate_based_local method specification is responsible for
using its model_pointer (see Method Independent Controls) to select a surrogate model (see Surrogate
Model Controls). Any model_pointer identified in an approximate sub-method specification is ignored.

SBL algorithm controls include max_iterations (the maximum number of SBL cycles allowed),
convergence_tolerance (the relative tolerance used in internal SBL convergence assessments), soft_-
convergence_limit (a soft convergence control for the SBL iterations which limits the number of consec-
utive iterations with improvement less than the convergence tolerance), and truth_surrogate_bypass (a
flag for bypassing all lower level surrogates when performing truth verifications on a top level surrogate). Table
5.23 summarizes these SBL inputs.

The trust_region optional group specification can be used to specify the initial size of the trust region (using
initial_size) relative to the total variable bounds, the minimum size of the trust region (using minimum_-
size), the contraction factor for the trust region size (using contraction_factor) used when the surrogate
model is performing poorly, and the expansion factor for the trust region size (using expansion_factor) used
when the the surrogate model is performing well. Two additional commands are the trust region size contraction
threshold (using contract_threshold) and the trust region size expansion threshold (using expand_-
threshold). These two commands are related to what is called the trust region ratio, which is the actual
decrease in the truth model divided by the predicted decrease in the truth model in the current trust region. The
command contract_threshold sets the minimum acceptable value for the trust region ratio, i.e., values
below this threshold cause the trust region to shrink for the next SBL iteration. The command expand_-
threshold determines the trust region value above which the trust region will expand for the next SBL iteration.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

96 Method Commands

Description Keyword Associated Data Status Default
Surrogate-based
local method

surrogate_-
based_local

none Required group N/A

Approximate
sub-problem
minimization
method pointer

approx_-
method_-
pointer

string Required (1 of 2
selections)

N/A

Approximate
sub-problem
minimization
method name

approx_-
method_name

string Required (1 of 2
selections)

N/A

Maximum number
of SBL iterations

max_-
iterations

integer Optional 100

Convergence
tolerance for SBL
iterations

convergence_-
tolerance

real Optional 1.e-4

Soft convergence
limit for SBL
iterations

soft_-
convergence_-
limit

integer Optional 5

Flag for bypassing
lower level
surrogates in truth
verifications

truth_-
surrogate_-
bypass

none Optional no bypass

Table 5.23: Specification detail for surrogate-based local minimization method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.6 Surrogate-Based Minimization Methods 97

Table 5.24 summarizes these trust region inputs.

Description Keyword Associated Data Status Default
Trust region group
specification

trust_region none Optional group N/A

Trust region initial
size (relative to
bounds)

initial_size real Optional 0.4

Trust region
minimum size

minimum_size real Optional 1.e-6

Shrink trust region
if trust region ratio
is below this value

contract_-
threshold

real Optional 0.25

Expand trust
region if trust
region ratio is
above this value

expand_-
threshold

real Optional 0.75

Trust region
contraction factor contraction_-

factor

real Optional 0.25

Trust region
expansion factor

expansion_-
factor

real Optional 2.0

Table 5.24: Specification detail for trust region controls in surrogate-based local methods

For SBL problems with nonlinear constraints, a number of algorithm formulations exist as described in [Eldred
and Dunlavy, 2006] and as summarized in the Advanced Examples section of the Models chapter of the Users
Manual [Adams et al., 2010]. First, the "primary" functions (that is, the objective functions or least squares terms)
in the approximate subproblem can be selected to be surrogates of the original primary functions (original_-
primary), a single objective function (single_objective) formed from the primary function surrogates,
or either an augmented Lagrangian merit function (augmented_lagrangian_objective) or a Lagrangian
merit function (lagrangian_objective) formed from the primary and secondary function surrogates. The
former option may imply the use of a nonlinear least squares method, a multiobjective optimization method,
or a single objective optimization method to solve the approximate subproblem, depending on the definition of
the primary functions. The latter three options all imply the use of a single objective optimization method re-
gardless of primary function definition. Second, the surrogate constraints in the approximate subproblem can be
selected to be surrogates of the original constraints (original_constraints) or linearized approximations
to the surrogate constraints (linearized_constraints), or constraints can be omitted from the subproblem
(no_constraints). Following optimization of the approximate subproblem, the candidate iterate is evaluated
using a merit function, which can be selected to be a simple penalty function with penalty ramped by SBL itera-
tion number (penalty_merit), an adaptive penalty function where the penalty ramping may be accelerated in
order to avoid rejecting good iterates which decrease the constraint violation (adaptive_penalty_merit), a
Lagrangian merit function which employs first-order Lagrange multiplier updates (lagrangian_merit), or an
augmented Lagrangian merit function which employs both a penalty parameter and zeroth-order Lagrange multi-
plier updates (augmented_lagrangian_merit). When an augmented Lagrangian is selected for either the
subproblem objective or the merit function (or both), updating of penalties and multipliers follows the approach
described in [Conn et al., 2000]. Following calculation of the merit function for the new iterate, the iterate is
accepted or rejected and the trust region size is adjusted for the next SBL iteration. Iterate acceptance is governed
either by a trust region ratio (tr_ratio) formed from the merit function values or by a filter method (filter);
however, trust region resizing logic is currently based only on the trust region ratio. For infeasible iterates, con-

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

98 Method Commands

straint relaxation can be used for balancing constraint satisfaction and progress made toward an optimum. The
command constraint_relax followed by a method name specifies the type of relaxation to be used. Cur-
rently, homotopy [Perez et al., 2004] is the only available method for constraint relaxation, and this method is
dependent on the presence of the NPSOL library within the DAKOTA executable. Table 5.25 summarizes these
constraint management inputs.

Description Keyword Associated Data Status Default
Approximate
subproblem
formulation

approx_-
subproblem

original_-
primary |
single_-
objective |
augmented_-
lagrangian_-
objective |
lagrangian_-
objective
original_-
constraints |
linearized_-
constraints |
no_-
constraints

Optional group original_-
primary
original_-
constraints

SBL merit function merit_-
function

penalty_-
merit |
adaptive_-
penalty_-
merit |
lagrangian_-
merit |
augmented_-
lagrangian_-
merit

Optional group augmented_-
lagrangian_-
merit

SBL iterate
acceptance logic

acceptance_-
logic

tr_ratio |
filter

Optional group filter

SBL constraint
relaxation method
for infeasible
iterates

constraint_-
relax

homotopy Optional group no relaxation

Table 5.25: Specification detail for constraint management in surrogate-based local methods

5.6.2 Surrogate-Based Global Method

The surrogate_based_global method differs from the surrogate_based_local method in a few
ways. First, surrogate_based_global is not a trust region method. Rather, surrogate_based_-
global works in an iterative scheme where optimization is performed on a global surrogate using the same
bounds during each iteration. In one iteration, the optimal solutions of the surrogate model are found, and then
a selected set of these optimal surrogate solutions are passed to the next iteration. At the next iteration, these

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.6 Surrogate-Based Minimization Methods 99

surrogate points are evaluated with the "truth" model, and then these points are added back to the set of points
upon which the next surrogate is constructed. In this way, the optimization acts on a more accurate surrogate
during each iteration, presumably driving to optimality quickly. This approach has no guarantee of convergence.
It was originally designed for MOGA (a multi-objective genetic algorithm). Since genetic algorithms often need
thousands or tens of thousands of points to produce optimal or near-optimal solutions, the use of surrogates can
be helpful for reducing the truth model evaluations. Instead of creating one set of surrogates for the individual
objectives and running the optimization algorithm on the surrogate once, the idea is to select points along the
(surrogate) Pareto frontier, which can be used to supplement the existing points. In this way, one does not need to
use many points initially to get a very accurate surrogate. The surrogate becomes more accurate as the iterations
progress. Note that the user has the option of appending the optimal points from the surrogate model to the current
set of truth points or using the optimal points from the surrogate model to replace the optimal set of points from
the previous iteration. Although appending to the set is the default behavior, at this time we strongly recommend
using the option replace_points because it appears to be more accurate and robust.

As for the surrogate_based_local method, the surrogate_based_global specification must iden-
tify a sub-method using either approx_method_pointer or approx_method_name and must identify a
surrogate model (see Surrogate Model Controls) using its model_pointer (see Method Independent Controls).
The only other algorithm control at this time is max_iterations (the maximum number of surrogate update
cycles allowed). Table 5.26 summarizes these surrogate based global inputs.

Description Keyword Associated Data Status Default
Surrogate-based
global method

surrogate_-
based_global

none Required group N/A

Approximate
sub-problem
minimization
method pointer

approx_-
method_-
pointer

string Required (1 of 2
selections)

N/A

Approximate
sub-problem
minimization
method name

approx_-
method_name

string Required (1 of 2
selections)

N/A

Maximum number
of surrogate update
iterations

max_-
iterations

integer Optional 100

Replace points
used in surrogate
construction with
best points from
previous iteration

replace_-
points

none Optional Points appended,
not replaced

Table 5.26: Specification detail for the surrogate-based global method

We have two cautionary notes before using the surrogate-based global method:

• One might first try a single minimization method coupled with a surrogate model prior to using the
surrogate-based global method. This is essentially equivalent to setting max_iterations to 1 and will
allow one to get a sense of what surrogate types are the most accurate to use for the problem. (Also note
that one can specify that surrogates be built for all primary functions and constraints or for only a subset of
these functions and constraints. This allows one to use a "truth" model directly for some of the response
functions, perhaps due to them being much less expensive than other functions. This is outlined in Surrogate

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

100 Method Commands

Model Controls.)

• We initially recommend a small number of maximum iterations, such as 3-5, to get a sense of how the
optimization is evolving as the surrogate gets updated. If it appears to be changing significantly, then a
larger number (used in combination with restart) may be needed.

5.6.3 Efficient Global Method

The Efficient Global Optimization (EGO) method was first developed by Jones, Schonlau, and Welch [Jones et
al., 1998]. In EGO, a stochastic response surface approximation for the objective function is developed based on
some sample points from the "true" simulation. The particular response surface used is a Gaussian process (GP).
The GP allows one to calculate the prediction at a new input location as well as the uncertainty associated with
that prediction. The key idea in EGO is to maximize the Expected Improvement Function (EIF). The EIF is used
to select the location at which a new training point should be added to the Gaussian process model by maximizing
the amount of improvement in the objective function that can be expected by adding that point. A point could
be expected to produce an improvement in the objective function if its predicted value is better than the current
best solution, or if the uncertainty in its prediction is such that the probability of it producing a better solution
is high. Because the uncertainty is higher in regions of the design space with few observations, this provides
a balance between exploiting areas of the design space that predict good solutions, and exploring areas where
more information is needed. EGO trades off this "exploitation vs. exploration." The general procedure for these
EGO-type methods is:

• Build an initial Gaussian process model of the objective function

• Find the point that maximizes the EIF. If the EIF value at this point is sufficiently small, stop.

• Evaluate the objective function at the point where the EIF is maximized. Update the Gaussian process
model using this new point. Return to the previous step.

Note that several major differences exist between our implementation and that of [Jones et al., 1998]. First,
rather than using a branch and bound method to find the point which maximizes the EIF, we use the DIRECT
global optimization method (see DIRECT and NCSU Methods). Second, we support both global optimization
and global nonlinear least squares as well as general nonlinear constraints through abstraction and subproblem
recasting within the SurrBasedMinimizer and EffGlobalMinimizer classes.

The efficient global method is in prototype form. Currently, we do not expose any specification controls for the
underlying Gaussian process model used or for the optimization of the expected improvement function (which is
currently performed by the NCSU DIRECT algorithm using its internal defaults). Future releases may allow more
specification detail. The efficient global algorithm is specified by the keyword efficient_global along with
an optional seed specification, as shown in in Table 5.27 below.

5.7 Uncertainty Quantification Methods

DAKOTA has several methods for propagating uncertainty. Aleatory uncertainty refers to inherent variability,
irreducible uncertainty, or randomness, and is addressed with the probabilistic methods described in Aleatory
Uncertainty Quantification Methods. Epistemic uncertainty refers to subjective uncertainty, reducible uncertainty,

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 101

Description Keyword Associated Data Status Default
Efficient global
method

efficient_-
global

none Required group N/A

Random seed seed integer Optional Time based seed:
nonrepeatable

Table 5.27: Specification detail for the efficient global method

model form uncertainty, or uncertainty due to lack of knowledge, and is addressed using the non-probabilistic
approaches described in Epistemic Uncertainty Quantification Methods. In general, we refer to both classes
of uncertainty quantification methods in DAKOTA as nondeterministic methods. In the descriptions below, we
described the issues and specification controls that are common to both aleatory and epistemic uncertainty quan-
tification.

DAKOTA’s nondeterministic methods do not make use of many method independent controls. Only the x_-
taylor_mpp, u_taylor_mpp, x_two_point, and u_two_point methods within nond_local_-
reliability use method independent convergence controls (see Local reliability methods). As such, the
nondeterministic branch documentation which follows is primarily limited to the method dependent controls for
the sampling, reliability, stochastic expansion, and epistemic methods.

With a few exceptions (nond_global_reliability, nond_importance, nond_local_evidence,
and nond_global_evidence do not support mappings involving reliability_levels, and nond_-
local_interval_est and nond_global_interval_est do not support any level mappings), each
of these techniques supports response_levels, probability_levels, reliability_levels,
and gen_reliability_levels specifications along with optional num_response_levels, num_-
probability_levels, num_reliability_levels and num_gen_reliability_levels keys.
The keys define the distribution of the levels among the different response functions. For example, the following
specification

num_response_levels = 2 4 3
response_levels = 1. 2. .1 .2 .3 .4 10. 20. 30.

would assign the first two response levels (1., 2.) to response function 1, the next four response levels (.1, .2, .3,
.4) to response function 2, and the final three response levels (10., 20., 30.) to response function 3. If the num_-
response_levels key were omitted from this example, then the response levels would be evenly distributed
among the response functions (three levels each in this case).

The response_levels specification provides the target response values for generating probabilities, reliabil-
ities, or generalized reliabilities (forward mapping). The selection among these possible results for the forward
mapping is performed with the compute keyword followed by either probabilities, reliabilities, or
gen_reliabilities. Conversely, the probability_levels, reliability_levels, and gen_-
reliability_levels specifications provide target levels for which response values will be computed
(inverse mapping). Specifications of response_levels, probability_levels, reliability_-
levels, and gen_reliability_levels may be combined within the calculations for each response func-
tion. The mapping results (probabilities, reliabilities, or generalized reliabilities for the forward mapping and
response values for the inverse mapping) define the final statistics of the nondeterministic analysis that can be
accessed for use at a higher level (via the primary and secondary mapping matrices for nested models; see Nested
Model Controls).

Sets of response-probability pairs computed with the forward/inverse mappings define either a cumulative distri-
bution function (CDF) or a complementary cumulative distribution function (CCDF) for each response func-

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

102 Method Commands

tion. In the case of evidence-based epistemic methods, this is generalized to define either cumulative be-
lief and plausibility functions (CBF and CPF) or complementary cumulative belief and plausibility functions
(CCBF and CCPF) for each response function, where a forward mapping involves computing the belief and
plausibility probability level for a specified response level and an inverse mapping involves computing the be-
lief and plausibility response level for either a specified probability level or a specified generalized reliability
level (two results for each level mapping in the evidence-based epistemic case, instead of the one result for
each level mapping in the aleatory case). The selection of a CDF/CBF/CPF or CCDF/CCBF/CCPF can be per-
formed with the distribution keyword followed by either cumulative for the CDF/CBF/CPF option or
complementary for the CCDF/CCBF/CCPF option. This selection also defines the sign of the reliability or
generalized reliability indices. Table 5.28 provides the specification detail for the forward/inverse mappings used
by each of the nondeterministic analysis methods.

Different nondeterministic methods have differing support for uncertain variable distributions. Table 5.29 sum-
marizes the uncertain variables that are available for use by the different methods, where a "-" indicates that the
distribution is not supported by the method, a "U" means the uncertain input variables of this type must be uncor-
related, a "C" denotes that correlations are supported involving uncertain input variables of this type. Additional
notes include:

• we have three variants for stochastic expansions (SE), listed as Wiener, Askey, and Extended, which draw
from different sets of basis polynomials. The term stochastic expansion indicates polynomial chaos and
stochastic collocation collectively. Refer to Polynomial chaos expansion method and Stochastic collocation
method for additional information on these three options.

• methods supporting the epistemic interval distributions have differing approaches: nond_sampling and
the lhs option of nond_global_interval_est model the interval basic probability assignments
(BPAs) as continuous histogram bin distributions for purposes of generating samples; nond_local_-
interval_est and the ego option of nond_global_interval_est ignore the BPA details and
models these variables as simple bounded regions defined by the cell extremes; and nond_local_-
evidence and nond_global_evidence model the interval specifications as true BPAs.

5.7.1 Aleatory Uncertainty Quantification Methods

Aleatory uncertainty is also known as inherent variability, irreducible uncertainty, or randomness. An exam-
ple of aleatory uncertainty is the distribution of height in a population, as it is characterized by the availability
of sufficient data to accurately model the form of the variation. For this reason, aleatory uncertainty is typi-
cally modeled using probabilistic approaches through the specification of probability distributions to represent
the uncertain input variables and the propagation of this uncertainty using probability theory. The probabilistic
approaches supported in DAKOTA include sampling, local and global reliability, polynomial chaos, and stochas-
tic collocation, which may be used to propagate random variables described by Normal Distribution, Lognormal
Distribution, Uniform Distribution, Loguniform Distribution, Triangular Distribution, Exponential Distribution,
Beta Distribution, Gamma Distribution, Gumbel Distribution, Frechet Distribution, Weibull Distribution, His-
togram Bin Distribution, Poisson Distribution, Binomial Distribution, Negative Binomial Distribution, Geometric
Distribution, Hypergeometric Distribution, and/or Histogram Point Distribution.

Nondeterministic sampling method The nondeterministic sampling method is selected using the nond_-
sampling specification. This method draws samples from the specified uncertain variable probability distri-
butions and propagates them through the model to obtain statistics on the output response functions of interest.
DAKOTA provides access to nondeterministic sampling methods through the combination of the NonDSampling
base class and the NonDLHSSampling derived class.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 103

Description Keyword Associated Data Status Default
Distribution type distribution cumulative |

complementary
Optional group cumulative

(CDF)
Response levels response_-

levels
list of reals Optional group No CDF/CCDF

probabili-
ties/reliabilities to
compute

Number of
response levels

num_-
response_-
levels

list of integers Optional response_-
levels evenly
distributed among
response functions

Target statistics for
response levels

compute
probabilities
|
reliabilities
| gen_-
reliabilities

Optional
probabilities

Probability levels
probability_-
levels

list of reals Optional group No CDF/CCDF
response levels to
compute

Number of
probability levels

num_-
probability_-
levels

list of integers Optional
probability_-
levels evenly
distributed among
response functions

Reliability levels
reliability_-
levels

list of reals Optional group No CDF/CCDF
response levels to
compute

Number of
reliability levels

num_-
reliability_-
levels

list of integers Optional
reliability_-
levels evenly
distributed among
response functions

Generalized
reliability levels

gen_-
reliability_-
levels

list of reals Optional group No CDF/CCDF
response levels to
compute

Number of
generalized
reliability levels

num_gen_-
reliability_-
levels

list of integers Optional gen_-
reliability_-
levels evenly
distributed among
response functions

Table 5.28: Specification detail for forward/inverse level mappings

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

104 Method Commands

Distri-
bution
Type

Sam-
pling

Local
Relia-
bility

Global
Relia-
bility

Wiener
SE

Askey
SE

Ex-
tended
SE

Local
Inter-
val

Global
Inter-
val

Local
Evi-
dence

Global
Evi-
dence

Nor-
mal

C C C C C C - - - -

Bounded
Nor-
mal

C U U U U U - - - -

Log-
normal

C C C C C U - - - -

Bounded
Log-
normal

C U U U U U - - - -

Uni-
form

C C C C U U - - - -

Logu-
niform

C U U U U U - - - -

Trian-
gular

C U U U U U - - - -

Expo-
nential

C C C C U U - - - -

Beta C U U U U U - - - -

Gamma
C C C C U U - - - -

Gum-
bel

C C C C C U - - - -

Frechet
C C C C C U - - - -

Weibull
C C C C C U - - - -

Con-
tinu-
ous
His-
togram
Bin

C U U U U U - - - -

Pois-
son

C - - - - - - - - -

Bino-
mial

C - - - - - - - - -

Nega-
tive
Bino-
mial

C - - - - - - - - -

Geo-
metric

C - - - - - - - - -

Hyper-
geo-
metric

C - - - - - - - - -

Dis-
crete
His-
togram
Point

C - - - - - - - - -

Inter-
val

U - - - - - U U U U

Con-
tinu-
ous
Design
(all_-
variables)

U - U U U U - - - -

Dis-
crete
Design
Range,
Int
Set,
Real
Set
(all_-
variables)

U - - - - - - - - -

Con-
tinu-
ous
State
(all_-
variables)

U - U U U U - - - -

Dis-
crete
State
Range,
Int
Set,
Real
Set
(all_-
variables)

U - - - - - - - - -

Table 5.29: Summary of Distribution Types supported by Nondeterministic Methods

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 105

CDF/CCDF probabilities are calculated for specified response levels using a simple binning approach. Response
levels are calculated for specified CDF/CCDF probabilities and generalized reliabilities by indexing into a sorted
samples array (the response levels computed are not interpolated and will correspond to one of the sampled val-
ues). CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample
standard deviations separating the sample mean from the response level. Response levels are calculated for spec-
ified CDF/CCDF reliabilities by projecting out the prescribed number of sample standard deviations from the
sample mean.

The seed integer specification specifies the seed for the random number generator which is used to make sam-
pling studies repeatable. The fixed_seed flag is relevant if multiple sampling sets will be generated during
the course of a strategy (e.g., surrogate-based optimization, optimization under uncertainty). Specifying this flag
results in the reuse of the same seed value for each of these multiple sampling sets, which can be important for
reducing variability in the sampling results. However, this behavior is not the default as the repetition of the same
sampling pattern can result in a modeling weakness that an optimizer could potentially exploit (resulting in actual
reliabilities that are lower than the estimated reliabilities). In either case (fixed_seed or not), the study is
repeatable if the user specifies a seed and the study is random is the user omits a seed specification.

The number of samples to be evaluated is selected with the samples integer specification. The algorithm used to
generate the samples can be specified using sample_type followed by either random, for pure random Monte
Carlo sampling, or lhs, for Latin Hypercube sampling.

If the user wants to increment a particular set of samples with more samples to get better estimates of mean,
variance, and percentiles, one can select incremental_random or incremental_lhs as the sample_-
type. Note that a preliminary sample of size N must have already been performed, and a dakota.rst restart
file must be available from this original sample. For example, say a user performs an initial study using lhs
as the sample_type, and generates 50 samples. If the user creates a new input file where samples is now
specified to be 100, the sample_type is defined to be incremental_lhs or incremental_random,
and previous_samples is specified to be 50, the user will get 50 new LHS samples which maintain both the
correlation and stratification of the original LHS sample. The N new samples will be combined with the N original
samples to generate a combined sample of size 2N. The syntax for running the second sample set is: dakota -i
input2.in -r dakota.rst, where input2.in is the file which specifies incremental sampling. Note that
the number of samples in the second set MUST currently be 2 times the number of previous samples, although
incremental sampling based on any power of two may be supported in future releases.

The nondeterministic sampling method also supports a design of experiments mode through the all_-
variables flag. Normally, nond_sampling generates samples only for the uncertain variables, and treats
any design or state variables as constants. The all_variables flag alters this behavior by instructing the
sampling algorithm to treat any continuous design or continuous state variables as parameters with uniform prob-
ability distributions between their upper and lower bounds. Samples are then generated over all of the continuous
variables (design, uncertain, and state) in the variables specification. This is similar to the behavior of the design
of experiments methods described in Design of Computer Experiments Methods, since they will also generate
samples over all continuous design, uncertain, and state variables in the variables specification. However, the
design of experiments methods will treat all variables as being uniformly distributed between their upper and
lower bounds, whereas the nond_sampling method will sample the uncertain variables within their specified
probability distributions.

Finally, the nondeterministic sampling method supports two types of sensitivity analysis. In this context of sam-
pling, we take sensitivity analysis to be global, not local as when calculating derivatives of output variables with
respect to input variables. Our definition is similar to that of [Saltelli et al., 2004]: "The study of how uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model input." As a default,
DAKOTA provides correlation analyses when running LHS. Correlation tables are printed with the simple, par-
tial, and rank correlations between inputs and outputs. These can be useful to get a quick sense of how correlated

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

106 Method Commands

the inputs are to each other, and how correlated various outputs are to inputs. In addition, we have the capability
to calculate sensitivity indices through variance based decomposition using the keyword variance_based_-
decomp. Variance based decomposition is a way of using sets of samples to understand how the variance of the
output behaves, with respect to each input variable. A larger value of the sensitivity index, Si, means that the
uncertainty in the input variable i has a larger effect on the variance of the output. More details on the calculations
and interpretation of the sensitivity indices can be found in [Saltelli et al., 2004]. Note that variance_based_-
decomp is extremely computationally intensive since replicated sets of sample values are evaluated. If the user
specified a number of samples, N, and a number of nondeterministic variables, M, variance-based decomposition
requires the evaluation of N∗(M+2) samples. To obtain sensitivity indices that are reasonably accurate, we rec-
ommend that N, the number of samples, be at least one hundred and preferably several hundred or thousands.
Because of the computational cost, variance_based_decomp is turned off as a default. Table 5.30 provides
details of the nondeterministic sampling specifications beyond those of Table 5.28.

Description Keyword Associated Data Status Default
Nondeterministic
sampling method

nond_-
sampling

none Required group N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable among
multiple runs

Number of
samples

samples integer Optional minimum required

Sampling type sample_type random | lhs |
incremental_-
random
|incremental_-
lhs

Optional group lhs

All variables flag all_-
variables

none Optional sampling only over
uncertain variables

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Previous samples previous_-
samples

integer Optional 0 (no
previous_samples)

Table 5.30: Specification detail for nondeterministic sampling method

Local reliability methods Local reliability methods are selected using the nond_local_reliability
specification and are implemented within the NonDLocalReliability class. These methods compute approximate
response function distribution statistics based on specified uncertain variable probability distributions. Each of the
local reliability methods can compute forward and inverse mappings involving response, probability, reliability,
and generalized reliability levels.

The Mean Value method (MV, also known as MVFOSM in [Haldar and Mahadevan, 2000]) is the simplest,
least-expensive method in that it estimates the response means, response standard deviations, and all CDF/CCDF
forward/inverse mappings from a single evaluation of response functions and gradients at the uncertain variable
means. This approximation can have acceptable accuracy when the response functions are nearly linear and their
distributions are approximately Gaussian, but can have poor accuracy in other situations.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 107

All other reliability methods perform an internal nonlinear optimization to compute a most probable point (MPP)
of failure. A sign convention and the distance of the MPP from the origin in the transformed standard normal
space ("u-space") define the reliability index, as explained in the section on Reliability Methods in the Uncer-
tainty Quantification chapter of the Users Manual [Adams et al., 2010]. The reliability can then be converted to
a probability using either first- or second-order integration, may then be refined using importance sampling, and
finally may be converted to a generalized reliability index. The forward reliability analysis algorithm of com-
puting reliabilities/probabilities for specified response levels is called the Reliability Index Approach (RIA), and
the inverse reliability analysis algorithm of computing response levels for specified probability levels is called
the Performance Measure Approach (PMA). The different RIA/PMA algorithm options are specified using the
mpp_search specification which selects among different limit state approximations that can be used to reduce
computational expense during the MPP searches. The x_taylor_mean MPP search option performs a single
Taylor series approximation in the space of the original uncertain variables ("x-space") centered at the uncertain
variable means, searches for the MPP for each response/probability level using this approximation, and performs
a validation response evaluation at each predicted MPP. This option is commonly known as the Advanced Mean
Value (AMV) method. The u_taylor_mean option is identical to the x_taylor_mean option, except that
the approximation is performed in u-space. The x_taylor_mpp approach starts with an x-space Taylor series
at the uncertain variable means, but iteratively updates the Taylor series approximation at each MPP prediction
until the MPP converges. This option is commonly known as the AMV+ method. The u_taylor_mpp option
is identical to the x_taylor_mpp option, except that all approximations are performed in u-space. The order
of the Taylor-series approximation is determined by the corresponding responses specification and may be
first or second-order. If second-order (methods named AMV 2 and AMV 2+ in [Eldred and Bichon, 2006]),
the series may employ analytic, finite difference, or quasi Hessians (BFGS or SR1). The x_two_point MPP
search option uses an x-space Taylor series approximation at the uncertain variable means for the initial MPP
prediction, then utilizes the Two-point Adaptive Nonlinear Approximation (TANA) outlined in [Xu and Grandhi,
1998] for all subsequent MPP predictions. The u_two_point approach is identical to x_two_point, but
all the approximations are performed in u-space. The x_taylor_mpp and u_taylor_mpp, x_two_point
and u_two_point approaches utilize the max_iterations and convergence_tolerance method in-
dependent controls to control the convergence of the MPP iterations (the maximum number of MPP iterations per
level is limited by max_iterations, and the MPP iterations are considered converged when ‖ u(k+1)−u(k) ‖2

< convergence_tolerance). And, finally, the no_approx option performs the MPP search on the origi-
nal response functions without the use of any approximations. The optimization algorithm used to perform these
MPP searches can be selected to be either sequential quadratic programming (uses the npsol_sqp optimizer)
or nonlinear interior point (uses the optpp_q_newton optimizer) algorithms using the sqp or nip keywords.

In addition to the MPP search specifications, one may select among different integration approaches for com-
puting probabilities at the MPP by using the integration keyword followed by either first_order or
second_order. Second-order integration employs the formulation of [Hohenbichler and Rackwitz, 1988]
(the approach of [Breitung, 1984] and the correction of [Hong 1999] are also implemented, but are not active).
Combining the no_approx option of the MPP search with first- and second-order integrations results in the tra-
ditional first- and second-order reliability methods (FORM and SORM). These integration approximations may
be subsequently refined using importance sampling. The refinement specification allows the seletion of basic
importance sampling (import), adaptive importance sampling (adapt_import), or multimodal adaptive im-
portance sampling (mm_adapt_import), along with the specification of number of samples (samples) and
random seed (seed). Additional details on these methods are available in [Eldred et al., 2004b] and [Eldred
and Bichon, 2006] and in the Uncertainty Quantification Capabilities chapter of the Users Manual [Adams et al.,
2010].

Table 5.31 provides details of the local reliability method specifications beyond those of Table 5.28.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

108 Method Commands

Description Keyword Associated Data Status Default
Reliability method nond_local_-

reliability
none Required group N/A

MPP search type mpp_search x_taylor_-
mean |
u_taylor_-
mean |
x_taylor_mpp |
u_taylor_mpp |
x_two_point |
u_two_point |
no_approx

Optional group No MPP search
(MV method)

MPP search
algorithm

sqp, nip none Optional NPSOL’s SQP
algorithm

Integration method integration first_order |
second_order

Optional group First-order
integration

Refinement
method

refinement import |
adapt_import |
mm_adapt_-
import

Optional group No refinement

Refinement
samples

samples integer Optional 0

Refinement seed seed integer Optional group randomly
generated seed

Table 5.31: Specification detail for local reliability methods

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 109

Global reliability methods Global reliability methods are selected using the nond_global_reliability
specification and are implemented within the NonDGlobalReliability class. These methods do not support for-
ward/inverse mappings involving reliability_levels, since they never form a reliability index based
on distance in u-space. Rather they use a Gaussian process model to form an approximation to the limit state
(based either in x-space via the x_gaussian_process specification or in u-space via the u_gaussian_-
process specification), followed by probability estimation based on multimodal adaptive importance sampling
(see [Bichon et al., 2007]). These probability estimates may then be transformed into generalized reliability lev-
els if desired. At this time, inverse reliability analysis (mapping probability or generalized reliability levels into
response levels) is not yet operational, although it may be supported in future releases. The Gaussian process
model approximation to the limit state is formed over the uncertain variables by default, but may be extended to
also capture the effect of design and state variables via the all_variables flag.

Table 5.32 provides details of the global reliability method specifications beyond those of Table 5.28.

Description Keyword Associated Data Status Default
Global reliability
method

nond_-
global_-
reliability

none Required group N/A

Approximation
type

x_gaussian_-
process |
u_gaussian_-
process

none Required N/A

All variables flag all_-
variables

none Optional Contour estimation
only over uncertain
variables

Random seed for
initial GP
construction

seed integer Optional Time based seed:
nonrepeatable

Table 5.32: Specification detail for global reliability methods

Polynomial chaos expansion method The polynomial chaos expansion (PCE) is a general framework for the
approximate representation of random response functions in terms of finite-dimensional series expansions in
standardized random variables

R =
P∑

i=0

αiΨi(ξ)

where αi is a deterministic coefficient, Ψi is a multidimensional orthogonal polynomial and ξ is a vector of
standardized random variables. An important distinguishing feature of the methodology is that the functional
relationship between random inputs and outputs is captured, not merely the output statistics as in the case of many
nondeterministic methodologies. DAKOTA provides access to PCE methods through the NonDPolynomial-
Chaos class. Refer to the Uncertainty Quantification Capabilities chapter of the Users Manual [Adams et al.,
2010] for additional information on the PCE algorithm.

To select the basis Ψi of the expansion, three approaches may be employed, as previously shown in Table 5.29:
Wiener, Askey, and Extended. The Wiener option uses a Hermite orthogonal polynomial basis for all random
variables and employs the same nonlinear variable transformation as the local and global reliability methods (and
therefore has the same variable support). The Askey option, however, employs an extended basis of Hermite,

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

110 Method Commands

Legendre, Laguerre, Jacobi, and generalized Laguerre orthogonal polynomials. The Extended option avoids
the use of any nonlinear variable transformations by augmenting the Askey approach with numerically-generated
orthogonal polynomials for non-Askey probability density functions. The selection of Wiener versus Askey versus
Extended is partially automated and partially under the user’s control. The Extended option is the default and
supports only Gaussian correlations (see Table 5.29). This default can be overridden by the user by supplying
the keyword askey to request restriction to the use of Askey bases only or by supplying the keyword wiener
to request restriction to the use of exclusively Hermite bases. If needed to support prescribed correlations (not
under user control), the Extended and Askey options will fall back to the Wiener option on a per variable basis.
If the prescribed correlations are also unsupported by Wiener expansions, then DAKOTA will exit with an error.
Additional details include:

• Askey polynomial selections include Hermite for normal (optimal) as well as bounded normal, lognormal,
bounded lognormal, gumbel, frechet, and weibull (sub-optimal); Legendre for uniform (optimal) as well as
loguniform, triangular, and bin-based histogram (sub-optimal); Laguerre for exponential (optimal); Jacobi
for beta (optimal); and generalized Laguerre for gamma (optimal).

• Extended polynomial selections replace each of the sub-optimal Askey basis selections with numerically-
generated polynomials that are orthogonal to the prescribed probability density functions (for bounded
normal, lognormal, bounded lognormal, loguniform, triangular, gumbel, frechet, weibull, and bin-based
histogram).

To obtain the coefficients αi of the expansion, five options are provided:

1. multidimensional integration by a tensor-product of Gaussian quadrature rules (specified with
quadrature_order, where the order per variable may be anisotropic), where supported rules in-
clude Gauss-Hermite, Gauss-Legendre (Clenshaw-Curtis is not supported for tensor grids since Gauss-
Legendre is preferred when nesting cannot be exploited), Gauss-Jacobi, Gauss-Laguerre, generalized
Gauss-Laguerre, and numerically-generated Gauss rules. To synchronize with tensor-product integration,
a tensor-product expansion is used, where the order pi of the expansion in each dimension is one less than
the quadrature order mi in each dimension. The total number of terms, N, in a tensor-product expansion
involving n uncertain input variables is

N = 1 + P =
n∏

i=1

(pi + 1)

2. multidimensional integration by the Smolyak sparse grid method (specified with sparse_grid_-
level and, optionally, dimension_preference) employing weakly-nested Gauss-Hermite and
Gauss-Legendre rules, and non-nested Gauss-Jacobi, Gauss-Laguerre, generalized Gauss-Laguerre,
and numerically-generated Gauss rules. Both the rule type and the dimension emphasis (specified
with dimension_preference, where higher preference leads to higher order resolution) may be
anisotropic. For PCE with isotropic Smolyak, a total-order expansion is used, where the isotropic order
p of the expansion is rigorously estimated from the set of monomials integrable by a particular sparse grid
construction. The total number of terms N for an isotropic total-order expansion of order p over n variables
is given by

N = 1 + P = 1 +
p∑

s=1

1
s!

s−1∏
r=0

(n + r) =
(n + p)!

n!p!

. Since fully nested Clenshaw-Curtis integration requires exponential growth rules (relating quadrature
order m from level l) leading to an irregular set of resolvable monomials known as the "hyperbolic cross,"

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 111

the use of a total-order expansion leads to a poor synchronization between resolvable monomial set and
chaos expansion. For this reason, Clenshaw-Curtis integration is disabled for PCE and weakly-/non-nested
rules with linear growth (and a regular set of resolvable monomials) are employed exclusively. For PCE
with anisotropic Smolyak, a custom anisotropic expansion is estimated (based again on the set of monomials
that are resolvable by the anisotropic sparse grid).

3. multidimensional integration by random sampling (specified with expansion_samples). In this case,
the expansion order p cannot be inferred from the numerical integration specification and it is necessary to
provide either expansion_order or expansion_terms to specify either p or N, respectively, for a
total-order expansion, where the latter specification allows the use of a partial-order expansion (truncation
of a complete order expansion, while supported, is not generally recommended).

4. linear regression (specified with either collocation_points or collocation_ratio). A total-
order expansion is used and must be specified using either expansion_order or expansion_terms
as described in the previous option. Given p and N, the total number of collocation points (including any
sample reuse) must be at least N, and an oversampling is generally advisable. To more easily satisfy this
requirement (i.e., to avoid requiring the user to calculate N from n and p), collocation_ratio allows
for specification of a constant oversampling factor applied to N (e.g., collocation_ratio = 2. for
factor of 2 oversampling).

5. coefficient import from a file (specified with expansion_import_file). A total-order expansion is
assumed and must be specified using either expansion_order or expansion_terms.

If n is small (e.g., less than five), then tensor-product Gaussian quadrature is quite effective and can be the pre-
ferred choice. For moderate n (e.g., from five to ten), tensor-product quadrature quickly becomes too expensive
and the sparse grid and point collocation approaches are preferred. For large n (e.g., more than ten), point collo-
cation may begin to suffer from ill-conditioning and sparse grids are generally recommended. Random sampling
for coefficient estimation is generally not recommended, although it does hold the advantage that the simula-
tion budget is more flexible than that required by the other approaches. For incremental studies, approaches 3
and 4 support reuse of previous samples through the incremental_lhs (refer to Nondeterministic sampling
method for description of incremental LHS) and reuse_samples (refer to Global approximations for descrip-
tion of the "all" option of sample reuse) specifications, respectively. As for Nondeterministic sampling method
and Global reliability methods, the all_variables flag can be used to form expansions over all continuous
variables, rather than just the default aleatory uncertain variables. For continuous design, continuous state, and
epistemic interval variables included in all_variables mode, Legendre chaos bases are used to model the
bounded intervals for these variables. However, these variables are not assumed to have any particular probability
distribution, only that they are independent variables. Moreover, when probability integrals are evaluated, only
the aleatory random variable domain is integrated, leaving behind a polynomial relationship between the statistics
and the remaining design/state/epistemic variables.

Additional specifications include the level mappings described in Uncertainty Quantification Methods and the
seed, fixed_seed, samples, and sample_type specifications described in Nondeterministic sampling
method. These latter sampling specifications refer to sampling on the PCE approximation for the purposes of
generating approximate statistics, which should be distinguished from simulation sampling for generating the
chaos coefficients as described in the previous paragraph. Table 5.33 provides details of the polynomial chaos
expansion specifications beyond those of Table 5.28.

Stochastic collocation method The stochastic collocation (SC) method is very similar to the PCE method de-
scribed above, with the key difference that the orthogonal polynomial basis functions are replaced with Lagrange
polynomial interpolants. The expansion takes the form

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

112 Method Commands

Description Keyword Associated Data Status Default
Polynomial chaos
expansion method

nond_-
polynomial_-
chaos

none Required group N/A

Alternate basis of
orthogonal
polynomials

askey | wiener none Optional Extended basis of
orthogonal
polynomials
(Askey +
numerically
generated)

Quadrature order
for PCE coefficient
estimation

quadrature_-
order

list of integer Required (1 of 6
selections)

N/A

Sparse grid level
for PCE coefficient
estimation

sparse_-
grid_level

integer Required (1 of 6
selections)

N/A

Sparse grid
dimension
preference

dimension_-
preference

list of reals Optional isotropic sparse
grid

Number of
simulation samples
for PCE coefficient
estimation

expansion_-
samples

integer Required (1 of 6
selections)

N/A

Number of
collocation points
for PCE coefficient
estimation

collocation_-
points

integer Required (1 of 6
selections)

N/A

Collocation point
oversampling ratio
for PCE coefficient
estimation

collocation_-
ratio

real Required (1 of 6
selections)

N/A

File name for
import of PCE
coefficients

expansion_-
import_file

string Required (1 of 6
selections)

N/A

Expansion order expansion_-
order

integer Required (1 of 2
selections) for
expansion_-
samples,
collocation_-
points,
collocation_-
ratio, or
expansion_-
import_file

N/A

Expansion terms expansion_-
terms

integer Required (1 of 2
selections) for
expansion_-
samples,
collocation_-
points,
collocation_-
ratio, or
expansion_-
import_file

N/A

Incremental LHS
flag for PCE
coefficient
estimation by
expansion_-
samples

incremental_-
lhs

none Optional coefficient
estimation does not
reuse previous
samples

Reuse samples flag
for PCE coefficient
estimation by
collocation_-
points or
collocation_-
ratio

reuse_-
samples

none Optional coefficient
estimation does not
reuse previous
samples

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable among
multiple PCE runs

Number of
samples on PCE
for generating
statistics

samples integer Optional 0 (will result in
error if
sampling-based
statistics are
requested)

Sampling type sample_type random | lhs Optional group lhs
All variables flag all_-

variables
none Optional Expansion only

over uncertain
variables

Table 5.33: Specification detail for polynomial chaos expansion method

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 113

R =
Np∑
i=1

riLi(ξ)

where Np is the total number of collocation points, ri is a response value at the ith collocation point, Li is the ith

multidimensional Lagrange interpolation polynomial, and ξ is a vector of standardized random variables. The ith

Lagrange interpolation polynomial assumes the value of 1 at the ith collocation point and 0 at all other collocation
points. Thus, in PCE, one forms coefficients for known orthogonal polynomial basis functions, whereas SC
forms multidimensional interpolation functions for known coefficients. DAKOTA provides access to SC methods
through the NonDStochCollocation class. Refer to the Uncertainty Quantification Capabilities chapter of the
Users Manual [Adams et al., 2010] for additional information on the SC algorithm.

To form the multidimensional interpolants Li of the expansion, two options are provided:

1. interpolation on a tensor-product of Gaussian quadrature points (specified with quadrature_order,
where the order per variable may be anisotropic). As for PCE, Gauss-Hermite, Gauss-Legendre, Gauss-
Jacobi, Gauss-Laguerre, generalized Gauss-Laguerre, and numerically-generated Gauss rules are sup-
ported.

2. interpolation on a Smolyak sparse grid (specified with sparse_grid_level and, optionally,
dimension_preference) defined from fully-nested Clenshaw-Curtis and weakly-/non-nested Gaus-
sian rules. Both the rule type and dimension emphasis may be anisotropic. Unlike PCE, expansion synchro-
nization is not an issue and both fully-nested Clenshaw-Curtis rules and anisotropic sparse grids are readily
employed without concern over irregular sets of resolvable monomials. For self-consistency in growth
rules, however, the grids are either fully nested using exponential growth rules or weakly-/non-nested using
linear growth rules – these two approaches are not mixed.

As for Polynomial chaos expansion method, the orthogonal polynomials used in defining the Gauss points
that make up the interpolation grid are governed by one of three options: Wiener, Askey, or Extended. The
Wiener option uses interpolation points from Gauss-Hermite quadrature for all random variables and employs
the same nonlinear variable transformation as the local and global reliability methods (and therefore has the
same variable support). The Askey option, however, employs interpolation points from Gauss-Hermite, Gauss-
Legendre, Gauss-Laguerre, Gauss-Jacobi, and generalized Gauss-Laguerre quadrature. The Extended option
avoids the use of any nonlinear variable transformations by augmenting the Askey approach with Gauss points
from numerically-generated orthogonal polynomials for non-Askey probability density functions. As for PCE, the
Wiener/Askey/Extended selection defaults to Extended, can be overridden by the user using the keywords askey
or wiener, and automatically falls back from Extended/Askey to Wiener on a per variable basis as needed to
support prescribed correlations.

If n is small, then tensor-product Gaussian quadrature is again the preferred choice. For larger n, tensor-product
quadrature quickly becomes too expensive and the sparse grid approach is preferred. Similar to the approach
decribed previously in Polynomial chaos expansion method, the all_variables flag can be used to expand
the dimensionality of the interpolation to include continuous design and state variables and epistemic uncertain
variables, in addition to the default aleatory uncertain variables. Interpolation points for these dimensions are
based on Gauss-Legendre rules for tensor-product quadrature or Smolyak sparse grids that are anisotropic in rule,
or Clenshaw-Curtis rules for Smolyak sparse grids that are isotropic in rule. Again, when probability integrals
are evaluated, only the aleatory random variable domain is integrated, leaving behind a polynomial relationship
between the statistics and the remaining design/state/epistemic variables.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

114 Method Commands

Additional specifications include the level mappings described in Uncertainty Quantification Methods and the
seed, fixed_seed, samples, and sample_type specifications described in Nondeterministic sampling
method. These latter sampling specifications refer to sampling on the interpolant for the purposes of generating
approximate statistics, which should not be confused with simulation evaluations used for forming the interpolant
as described in the previous paragraph. Table 5.34 provides details of the stochastic collocation specifications
beyond those of Table 5.28.

Description Keyword Associated Data Status Default
Stochastic
collocation method

nond_stoch_-
collocation

none Required group N/A

Alternate basis of
orthogonal
polynomials

askey | wiener none Optional Extended basis of
orthogonal
polynomials
(Askey +
numerically
generated)

Quadrature order
for collocation
points

quadrature_-
order

list of integer Required (1 of 2
selections)

N/A

Sparse grid level
for collocation
points

sparse_-
grid_level

integer Required (1 of 2
selections)

N/A

Sparse grid
dimension
preference

dimension_-
preference

list of reals Optional isotropic sparse
grid

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable among
multiple SC runs

Number of
samples on
interpolant for
generating
statistics

samples integer Optional 0 (will result in
error if
sampling-based
statistics are
requested)

Sampling type sample_type random | lhs Optional group lhs
All variables flag all_-

variables
none Optional Expansion only

over uncertain
variables

Table 5.34: Specification detail for stochastic collocation method

5.7.2 Epistemic Uncertainty Quantification Methods

Epistemic uncertainty is also referred to as subjective uncertainty, reducible uncertainty, model form uncertainty,
or uncertainty due to lack of knowledge. Examples of epistemic uncertainty are little or no experimental data
for an unknown physical parameter, or the existence of complex physics or behavior that is not included in the

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.7 Uncertainty Quantification Methods 115

simulation model of a system. Epistemic uncertainty can be modeled probabilistically but is often modeled using
non-probabilistic approaches such as interval propagation, evidence theory, possibility theory, information gap
theory, etc. In DAKOTA, epistemic uncertainty analysis is performed using interval analysis or Dempster-Shafer
theory of evidence. Epistemic (or mixed aleatory-epistemic) uncertainty may also be propagated through the
use of the Nondeterministic sampling method, although in this case, the output statistics are limited to response
intervals (any epistemic component suppresses all probabilistic results). Mixed uncertainty can also be addressed
through use of nested UQ (refer to the Users Manual [Adams et al., 2010] for NestedModel discussion and
examples); in this case, epistemic and aleatory analyses can be segregated and intervals on probabilistic results
can be reported. A subtle distinction exists between nond_sampling for epistemic intervals and the lhs option
of nond_global_interval_est: the former allows mixed aleatory-epistemic uncertainty within a single
level, whereas the latter supports only epistemic variables and relies on nesting to address mixed uncertainty. In
each of these cases, the Interval Uncertain Variable specification is used to describe the epistemic uncertainty using
either simple intervals or basic probability assignments. Note that for mixed UQ problems with both aleatory and
epistemic variables, if the user defines the epistemic variables as intervals and aleatory variables as probability
distribution types, the method nond_sampling (in a simple, single-level study) will result in intervals only
on the output. Although the aleatory variables will be sampled according to their distributions, the output will
only be reported as an interval given the presence of interval variables. There is also the option to perform nested
sampling, where one separates the epistemic and aleatory uncertain variables, samples over epistemic variables
in the outer loop and then samples the aleatory variables in the inner llop, resulting in intervals on statistics. The
calculation of intervals on statistics can also be performed by using nested approaches with interval estimation
or evidence methods in the outer loop and aleatory UQ methods on the inner loop such as stochastic expansion
or reliability methods. More detail about these "intervals on statistics" approaches can be found in [Eldred and
Swiler, 2009].

Local Interval Estimation In interval analysis, one assumes that nothing is known about an epistemic uncertain
variable except that its value lies somewhere within an interval. In this situation, it is NOT assumed that the value
has a uniform probability of occuring within the interval. Instead, the interpretation is that any value within
the interval is a possible value or a potential realization of that variable. In interval analysis, the uncertainty
quantification problem is one of determining the resulting bounds on the output (defining the output interval)
given interval bounds on the inputs. Again, any output response that falls within the output interval is a possible
output with no frequency information assigned to it.

We have the capability to perform interval analysis using either local methods (nond_local_interval_-
est) or global methods (nond_global_interval_est). If the problem is amenable to local optimization
methods (e.g. can provide derivatives or use finite difference method to calculate derivatives), then one can
use local methods to calculate these bounds. nond_local_interval_est allows the user to specify either
sqp which is sequential quadratic programming, or nip which is a nonlinear interior point method. Table 5.35
provides the specification for the local interval method.

Description Keyword Associated Data Status Default
Nondeterministic
interval estimation

nond_local_-
interval_est

none Required group N/A

Estimation method sqp | nip none Required group N/A

Table 5.35: Specification detail for local interval estimation used in epistemic uncertainty

Global Interval Estimation As mentioned above, when performing interval analysis, one assumes that nothing
is known about an epistemic uncertain variable except that its value lies somewhere within an interval. The goal

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

116 Method Commands

of uncertainty quantification in this context is to determine the resulting bounds on the output (defining the output
interval) given interval bounds on the inputs.

In the global approach, one uses either a global optimization method or a sampling method to assess the bounds.
nond_global_interval_est allows the user to specify either lhs, which performs Latin Hypercube Sam-
pling and takes the minimum and maximum of the samples as the bounds (no optimization is performed) or ego.
In the case of ego, the efficient global optimization (EGO) method is used to calculate bounds (see the EGO
method on this page for more explanation). When using lhs or ego, one can specify a seed for the number of
LHS samples, the random number generator, and the number of samples. Table 5.36 provides the specification
for the global interval methods.

Description Keyword Associated Data Status Default
Nondeterministic
interval estimation

nond_-
global_-
interval_est

none Required group N/A

Estimation method lhs | ego none Required group N/A
Random seed
generator

rng mt19937 |
rnum2

Optional mt19937

Random seed seed integer Optional randomly
generated seed

Number of
samples

samples integer Optional 10,000 for LHS,
approximately
numVars∧2 for
EGO

Table 5.36: Specification detail for global interval estimation used in epistemic uncertainty

Local Evidence Theory (Dempster-Shafer) Methods The above section discussed a pure interval approach.
This section discusses Dempster-Shafer evidence theory. In this approach, one does not assign a probability
distribution to each uncertain input variable. Rather, one divides each uncertain input variable into one or more
intervals. The input parameters are only known to occur within intervals: nothing more is assumed. Each interval
is defined by its upper and lower bounds, and a Basic Probability Assignment (BPA) associated with that interval.
The BPA represents a probability of that uncertain variable being located within that interval. The intervals
and BPAs are used to construct uncertainty measures on the outputs called "belief" and "plausibility." Belief
represents the smallest possible probability that is consistent with the evidence, while plausibility represents the
largest possible probability that is consistent with the evidence. For more information about the Dempster-Shafer
theory of evidence, see Oberkampf and Helton, 2003 and Helton and Oberkampf, 2004.

Similar to the interval approaches, one may use global or local methods to determine plausbility and belief mea-
sures for the outputs. Note that to calculate the plausibility and belief cumulative distribution functions, one has
to look at all combinations of intervals for the uncertain variables. Within each interval cell combination, the
minimum and maximum value of the objective function determine the belief and plausibility, respectively. In
terms of implementation, global methods use LHS sampling or global optimization to calculate the minimum
and maximum values of the objective function within each interval cell, while local methods use gradient-based
optimization methods to calculate these minima and maxima.

Finally, note that the nondeterministic general settings apply to the interval and evidence methods, but one needs
to be careful about the interpretation and translate probabilistic measures to epistemic ones. For example, if the
user specifies distribution of type complementary, a complementary plausibility and belief function will be gen-
erated for the evidence methods (as opposed to a complementary distribution function in the nond_sampling

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.8 Design of Computer Experiments Methods 117

case). If the user specifies a set of responses levels, both the belief and plausibility will be calculated for each
response level. Likewise, if the user specifies a probability level, the probability level will be interpreted both as
a belief and plausibility, and response levels corresponding to the belief and plausibility levels will be calculated.
Finally, if generalized reliability levels are specified, either as inputs (gen_reliability_levels) or out-
puts (response_levels with compute gen_reliabilities), then these are directly converted to/from
probability levels and the same probability-based mappings described above are performed.

Table 5.37 provides the specification for the nond_local_evidence method. Note that two local optimiza-
tion methods are available: sqp (sequential quadratic programming or nip (nonlinear interior point method).

Description Keyword Associated Data Status Default
Nondeterministic
local evidence
method

nond_local_-
evidence

none Required group N/A

Estimation method sqp | nip none Required group N/A

Table 5.37: Specification detail for local evidence theory method for epistemic uncertainty

Global Evidence Theory (Dempster-Shafer) Methods Evidence theory has been explained above in the Local
Evidence Theory section. The basic idea is that one specifies an "evidence structure" on uncertain inputs and
propagates that to obtain belief and plausibility functions on the response functions. The inputs are defined by
sets of intervals and Basic Probability Assignments (BPAs). Evidence propagation is computationally expensive,
since the minimum and maximum function value must be calculated for each "interval cell combination." These
bounds are aggregated into belief and plausibility.

Table 5.38 provides the specification for the nond_global_evidencemethod. nond_global_evidence
allows the user to specify either lhs or ego. lhs performs Latin Hypercube Sampling and takes the minimum
and maximum of the samples as the bounds per "interval cell combination." In the case of ego, the efficient global
optimization (EGO) method is used to calculate bounds (see the EGO method on this page for more explanation).
When using lhs or ego, one can specify a seed for the number of LHS samples, the random number generator,
and the number of samples.

Note that to calculate the plausibility and belief cumulative distribution functions, one has to look at all com-
binations of intervals for the uncertain variables. In terms of implementation, if one is using LHS sampling as
outlined above, this method creates a large sample over the response surface, then examines each cell to determine
the minimum and maximum sample values within each cell. To do this, one needs to set the number of samples
relatively high: the default is 10,000 and we recommend at least that number. If the model you are running is a
simulation that is computationally quite expensive, we recommend that you set up a surrogate model within the
DAKOTA input file so that nond_global_evidence performs its sampling and calculations on the surrogate
and not on the original model. If one uses optimization methods instead to find the minimum and maximum
sample values within each cell, this can also be computationally expensive.

5.8 Design of Computer Experiments Methods

Design and Analysis of Computer Experiments (DACE) methods compute response data sets at a selection of
points in the parameter space. Two libraries are provided for performing these studies: DDACE and FSUDace. A
DAKOTA interface to Lawrence Livermore National Laboratory’s PSUADE library is provided, but this package
is currently only available within LLNL. The design of experiments methods do not currently make use of any of
the method independent controls.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

118 Method Commands

Description Keyword Associated Data Status Default
Nondeterministic
global evidence
method

nond_-
global_-
evidence

none Required group N/A

Estimation method lhs | ego none Required group N/A
Random seed
generator

rng mt19937 or
rnum2

Optional mt19937

Random seed seed integer Optional randomly
generated seed

Number of
samples

samples integer Optional 10,000 for LHS,
approximately
numVars∧2 for
EGO

Table 5.38: Specification detail for global evidence theory method for epistemic uncertainty

5.8.1 DDACE

The Distributed Design and Analysis of Computer Experiments (DDACE) library provides the following DACE
techniques: grid sampling (grid), pure random sampling (random), orthogonal array sampling (oas), latin hy-
percube sampling (lhs), orthogonal array latin hypercube sampling (oa_lhs), Box-Behnken (box_behnken),
and central composite design (central_composite). It is worth noting that there is some overlap in sampling
techniques with those available from the nondeterministic branch. The current distinction is that the nondetermin-
istic branch methods are designed to sample within a variety of probability distributions for uncertain variables,
whereas the design of experiments methods treat all variables as having uniform distributions. As such, the de-
sign of experiments methods are well-suited for performing parametric studies and for generating data sets used in
building global approximations (see Global approximations), but are not currently suited for assessing the effect
of uncertainties. If a design of experiments over both design/state variables (treated as uniform) and uncertain
variables (with probability distributions) is desired, then nond_sampling can support this with its all_-
variables option (see Nondeterministic sampling method). DAKOTA provides access to the DDACE library
through the DDACEDesignCompExp class.

In terms of method dependent controls, the specification structure is straightforward. First, there is a set of design
of experiments algorithm selections separated by logical OR’s (grid or random or oas or lhs or oa_lhs
or box_behnken or central_composite). Second, there are optional specifications for the random seed
to use in generating the sample set (seed), for fixing the seed (fixed_seed) among multiple sample sets
(see Nondeterministic sampling method for discussion), for the number of samples to perform (samples), and
for the number of symbols to use (symbols). The seed control is used to make sample sets repeatable, and
the symbols control is related to the number of replications in the sample set (a larger number of symbols
equates to more stratification and fewer replications). The quality_metrics control is available for the
DDACE library. This control turns on calculation of volumetric quality measures which measure the uniformity
of the point samples. More details on the quality measures are given under the description of the FSU sampling
methods. The variance_based_decomp control is also available. This control enables the calculation of
sensitivity indices which indicate how important the uncertainty in each input variable is in contributing to the
output variance. More details on variance based decomposition are given in Nondeterministic sampling method.
Design of experiments specification detail is given in Table 5.39.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.8 Design of Computer Experiments Methods 119

Description Keyword Associated Data Status Default
Design of
experiments
method

dace none Required group N/A

dace algorithm
selection

grid | random |
oas | lhs |
oa_lhs |
box_behnken |
central_-
composite

none Required N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable among
multiple DACE
runs

Number of
samples

samples integer Optional minimum required

Number of
symbols

symbols integer Optional default for
sampling algorithm

Quality metrics quality_-
metrics

none Optional No quality_metrics

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Table 5.39: Specification detail for design of experiments methods

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

120 Method Commands

5.8.2 FSUDace

The Florida State University Design and Analysis of Computer Experiments (FSUDace) library provides the
following DACE techniques: quasi-Monte Carlo sampling (fsu_quasi_mc) based on the Halton sequence
(halton) or the Hammersley sequence (hammersley), and Centroidal Voronoi Tessellation (fsu_cvt). All
three methods generate sets of uniform random variables on the interval [0,1]. If the user specifies lower and
upper bounds for a variable, the [0,1] samples are mapped to the [lower, upper] interval. The quasi-Monte Carlo
and CVT methods are designed with the goal of low discrepancy. Discrepancy refers to the nonuniformity of
the sample points within the hypercube. Discrepancy is defined as the difference between the actual number and
the expected number of points one would expect in a particular set B (such as a hyper-rectangle within the unit
hypercube), maximized over all such sets. Low discrepancy sequences tend to cover the unit hypercube reasonably
uniformly. Quasi-Monte Carlo methods produce low discrepancy sequences, especially if one is interested in the
uniformity of projections of the point sets onto lower dimensional faces of the hypercube (usually 1-D: how well
do the marginal distributions approximate a uniform?) CVT does very well volumetrically: it spaces the points
fairly equally throughout the space, so that the points cover the region and are isotropically distributed with no
directional bias in the point placement. There are various measures of volumetric uniformity which take into
account the distances between pairs of points, regularity measures, etc. Note that CVT does not produce low-
discrepancy sequences in lower dimensions, however: the lower-dimension (such as 1-D) projections of CVT can
have high discrepancy.

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a set of
prime bases. Generally, we recommend that the user leave the default setting for the bases, which are the lowest
primes. Thus, if one wants to generate a sample set for 3 random variables, the default bases used are 2, 3, and 5 in
the Halton sequence. To give an example of how these sequences look, the Halton sequence in base 2 starts with
points 0.5, 0.25, 0.75, 0.125, 0.625, etc. The first few points in a Halton base 3 sequence are 0.33333, 0.66667,
0.11111, 0.44444, 0.77777, etc. Notice that the Halton sequence tends to alternate back and forth, generating a
point closer to zero then a point closer to one. An individual sequence is based on a radix inverse function defined
on a prime base. The prime base determines how quickly the [0,1] interval is filled in. Generally, the lowest
primes are recommended.

The Hammersley sequence is the same as the Halton sequence, except the values for the first random variable are
equal to 1/N, where N is the number of samples. Thus, if one wants to generate a sample set of 100 samples for 3
random variables, the first random variable has values 1/100, 2/100, 3/100, etc. and the second and third variables
are generated according to a Halton sequence with bases 2 and 3, respectively. For more information about these
sequences, see [Halton, 1960, Halton and Smith, 1964, and Kocis and Whiten, 1997].

The specification for specifying quasi-Monte Carlo (fsu_quasi_mc) is given below in Table 5.40. The user
must specify if the sequence is (halton) or (hammersley). The user must also specify the number of samples
to generate for each variable (samples). Then, there are three optional lists the user may specify. The first
list determines where in the sequence the user wants to start. For example, for the Halton sequence in base 2,
if the user specifies sequence_start = 2, the sequence would not include 0.5 and 0.25, but instead would start at
0.75. The default sequence_start is a vector with 0 for each variable, specifying that each sequence start
with the first term. The sequence_leap control is similar but controls the "leaping" of terms in the sequence.
The default is 1 for each variable, meaning that each term in the sequence be returned. If the user specifies a
sequence_leap of 2 for a variable, the points returned would be every other term from the QMC sequence. The
advantage to using a leap value greater than one is mainly for high-dimensional sets of random deviates. In this
case, setting a leap value to the next prime number larger than the largest prime base can help maintain uniformity
when generating sample sets for high dimensions. For more information about the efficacy of leaped Halton
sequences, see [Robinson and Atcitty, 1999]. The final specification for the QMC sequences is the prime base.
It is recommended that the user not specify this and use the default values. For the Halton sequence, the default
bases are primes in increasing order, starting with 2, 3, 5, etc. For the Hammersley sequence, the user specifies

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.8 Design of Computer Experiments Methods 121

(s-1) primes if one is generating an s-dimensional set of random variables.

The fixed_sequence control is similar to fixed_seed for other sampling methods. If fixed_sequence
is specified, the user will get the same sequence (meaning the same set of samples) for subsequent calls of the
QMC sampling method (for example, this might be used in a surrogate based optimization method or a parameter
study where one wants to fix the uncertain variables). The latinize command takes the QMC sequence and
"latinizes" it, meaning that each original sample is moved so that it falls into one strata or bin in each dimension
as in Latin Hypercube sampling. The default setting is NOT to latinize a QMC sample. However, one may
be interested in doing this in situations where one wants better discrepancy of the 1-dimensional projections
(the marginal distributions). The variance_based_decomp control is also available. This control enables
the calculation of sensitivity indices which indicate how important the uncertainty in each input variable is in
contributing to the output variance. More details on variance based decomposition are given in Nondeterministic
sampling method.

Finally, quality_metrics calculates four quality metrics relating to the volumetric spacing of the samples.
The four quality metrics measure different aspects relating to the uniformity of point samples in hypercubes.
Desirable properties of such point samples are: are the points equally spaced, do the points cover the region, and
are they isotropically distributed, with no directional bias in the spacing. The four quality metrics we report are
h, chi, tau, and d. h is the point distribution norm, which is a measure of uniformity of the point distribution. Chi
is a regularity measure, and provides a measure of local uniformity of a set of points. Tau is the second moment
trace measure, and d is the second moment determinant measure. All of these values are scaled so that smaller is
better (the smaller the metric, the better the uniformity of the point distribution). Complete explanation of these
measures can be found in [Gunzburger and Burkardt, 2004.].

The FSU CVT method (fsu_cvt) produces a set of sample points that are (approximately) a Centroidal Voronoi
Tessellation. The primary feature of such a set of points is that they have good volumetric spacing; the points
tend to arrange themselves in a pattern of cells that are roughly the same shape. To produce this set of points, an
almost arbitrary set of initial points is chosen, and then an internal set of iterations is carried out. These iterations
repeatedly replace the current set of sample points by an estimate of the centroids of the corresponding Voronoi
subregions. [Du, Faber, and Gunzburger, 1999].

The user may generally ignore the details of this internal iteration. If control is desired, however, there are a
few variables with which the user can influence the iteration. The user may specify max_iterations, the
number of iterations carried out; num_trials, the number of secondary sample points generated to adjust the
location of the primary sample points; and trial_type, which controls how these secondary sample points are
generated. In general, the variable with the most influence on the quality of the final sample set is num_trials,
which determines how well the Voronoi subregions are sampled. Generally, num_trials should be "large",
certainly much bigger than the number of sample points being requested; a reasonable value might be 10,000, but
values of 100,000 or 1 million are not unusual.

CVT has a seed specification similar to that in DDACE: there are optional specifications for the random seed to
use in generating the sample set (seed), for fixing the seed (fixed_seed) among multiple sample sets (see
Nondeterministic sampling method for discussion), and for the number of samples to perform (samples). The
seed control is used to make sample sets repeatable. Finally, the user has the option to specify the method
by which the trials are created to adjust the centroids. The trial_type can be one of three types: random,
where points are generated randomly; halton, where points are generated according to the Halton sequence;
and grid, where points are placed on a regular grid over the hyperspace.

Finally, latinization is available for CVT as with QMC. The latinize control takes the CVT sequence and
"latinizes" it, meaning that each original sample is moved so that it falls into one strata or bin in each dimension
as in Latin Hypercube sampling. The default setting is NOT to latinize a CVT sample. However, one may
be interested in doing this in situations where one wants better discrepancy of the 1-dimensional projections
(the marginal distributions). The variance_based_decomp control is also available. This control enables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

122 Method Commands

Description Keyword Associated Data Status Default
FSU Quasi-Monte
Carlo

fsu_quasi_mc none Required group N/A

Sequence type halton |
hammersley

none Required group N/A

Number of
samples

samples integer Optional (0) for standalone
sampling,
(minimum
required) for
surrogates

Sequence starting
indices

sequence_-
start

integer list (one
integer per
variable)

Optional Vector of zeroes

Sequence leaping
indices

sequence_-
leap

integer list (one
integer per
variable)

Optional Vector of ones

Prime bases for
sequences

prime_base integer list (one
integer per
variable)

Optional Vector of the first s
primes for
s-dimensions in
Halton, First (s-1)
primes for
Hammersley

Fixed sequence
flag

fixed_-
sequence

none Optional sequence not fixed:
sampling patterns
are variable among
multiple QMC
runs

Latinization of
samples

latinize none Optional No latinization

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Quality metrics quality_-
metrics

none Optional No quality_metrics

Table 5.40: Specification detail for FSU Quasi-Monte Carlo sequences

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.8 Design of Computer Experiments Methods 123

the calculation of sensitivity indices which indicate how important the uncertainty in each input variable is in
contributing to the output variance. More details on variance based decomposition are given in Nondeterministic
sampling method. The quality_metrics control is available for CVT as with QMC. This command turns on
calculation of volumetric quality measures which measure the "goodness" of the uniformity of the point samples.
More details on the quality measures are given under the description of the QMC methods.

The specification detail for the FSU CVT method is given in Table 5.41.

Description Keyword Associated Data Status Default
FSU CVT
sampling

fsu_cvt none Required group N/A

Random seed seed integer Optional randomly
generated seed

Fixed seed flag fixed_seed none Optional seed not fixed:
sampling patterns
are variable among
multiple CVT runs

Number of
samples

samples integer Required (0) for standalone
sampling,
(minimum
required) for
surrogates

Number of trials num_trials integer Optional 10000
Trial type trial_type random | grid |

halton
Optional random

Latinization of
samples

latinize none Optional No latinization

Variance based
decomposition

variance_-
based_decomp

none Optional No variance_-
based_decomp

Quality metrics quality_-
metrics

none Optional No quality_metrics

Table 5.41: Specification detail for FSU Centroidal Voronoi Tesselation sampling

5.8.3 PSUADE

The Problem Solving Environment for Uncertainty Analysis and Design Exploration (PSUADE) is a Lawrence
Livermore National Laboratory tool for metamodeling, sensitivity analysis, uncertainty quantification, and opti-
mization. Its features include non-intrusive and parallel function evaluations, sampling and analysis methods, an
integrated design and analysis framework, global optimization, numerical integration, response surfaces (MARS
and higher order regressions), graphical output with Pgplot or Matlab, and fault tolerance [C.H. Tong, 2005].
While PSUADE is only available internally at LLNL, DAKOTA includes a prototype interface to its MOAT sam-
pling method.

The Morris One-At-A-Time (MOAT) method, originally proposed by Morris [M.D. Morris, 1991], is a screening
method, designed to explore a computational model to distinguish between input variables that have negligible,
linear and additive, or nonlinear or interaction effects on the output. The computer experiments performed consist
of individually randomized designs which vary one input factor at a time to create a sample of its elementary
effects. The PSUADE implementation of MOAT is selected with method keyword psuade_moat. The number

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

124 Method Commands

of samples (samples) must be a positive integer multiple of (number of continuous design variable + 1) and
will be automatically adjusted if misspecified. The number of partitions (partitions) applies to each variable
being studied and must be odd (the number of MOAT levels per variable is partitions + 1). This will also be
adjusted at runtime as necessary. For information on practical use of this method, see [Saltelli, et al., 2004]. The
specification detail for the PSUADE MOAT method is given in Table 5.42.

Description Keyword Associated Data Status Default
PSUADE MOAT
method

psuade_moat none Required group N/A

Random seed seed integer Optional randomly
generated seed

Number of
samples

samples integer Optional 10∗(num_cdv + 1)

Number of
partitions

partitions integer Optional 3

Table 5.42: Specification detail for PSUADE methods

5.9 Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets at a selection of points in the parameter space.
These points may be specified as a vector, a list, a set of centered vectors, or a multi-dimensional grid. Capability
overviews and examples of the different types of parameter studies are provided in the Users Manual [Adams et
al., 2010]. DAKOTA implements all of the parameter study methods within the ParamStudy class.

With the exception of output verbosity (a setting of silent will suppress some parameter study diagnostic
output), DAKOTA’s parameter study methods do not make use of the method independent controls. Therefore,
the parameter study documentation which follows is limited to the method dependent controls for the vector, list,
centered, and multidimensional parameter study methods.

5.9.1 Vector parameter study

DAKOTA’s vector parameter study computes response data sets at selected intervals along a vector in parameter
space. It is often used for single-coordinate parameter studies (to study the effect of a single variable on a re-
sponse set), but it can be used more generally for multiple coordinate vector studies (to investigate the response
variations along some n-dimensional vector such as an optimizer search direction). This study is selected us-
ing the vector_parameter_study specification followed by either a final_point or a step_vector
specification.

The vector for the study can be defined in several ways (refer to dakota.input.summary). First, a final_-
point specification, when combined with the initial values from the variables specification (in Variables Com-
mands, see initial_point and initial_state for design and state variables as well as inferred initial
values for uncertain variables), uniquely defines an n-dimensional vector’s direction and magnitude through its
start and end points. The values included in the final_point specification are the actual variable values for
discrete sets, not the underlying set index value. The intervals along this vector are then specified with a num_-
steps specification, for which the distance between the initial values and the final_point is broken into
num_steps intervals of equal length. For continuous and discrete range variables, distance is measured in the
actual values of the variables, but for discrete set variables (either integer or real sets for design, uncertain, or state

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

5.9 Parameter Study Methods 125

types), distance is instead measured in index offsets. Since discrete sets may have nonuniform offsets in their enu-
merated set values but have uniform offsets in their index values, defining steps in terms of set indices allows for
meaningful parameter study specifications for these variable types. This study performs function evaluations at
both ends, making the total number of evaluations equal to num_steps+1. The study has stringent requirements
on performing appropriate steps with any discrete range and discrete set variables. A num_steps specification
must result in discrete range and set index steps that are integral: no remainder is currently permitted in the integer
step calculation and no rounding to integer steps will occur. The final_point specification detail is given in
Table 5.43.

Description Keyword Associated Data Status Default
Vector parameter
study

vector_-
parameter_-
study

none Required group N/A

Termination point
of vector

final_point list of reals (actual
values; no set
indices)

Required group N/A

Number of steps
along vector

num_steps integer Required N/A

Table 5.43: final_point specification detail for the vector parameter study

The other technique for defining a vector in the study is the step_vector specification. This parameter study
begins at the initial values and adds the increments specified in step_vector to obtain new simulation points.
For discrete set types (design, uncertain, or state; real or integer), the steps are set index offsets, not steps between
the actual set values. This increment process is performed num_steps times, and since the initial values are
included, the total number of simulations is again equal to num_steps+1. The step_vector specification
detail is given in Table 5.44.

Description Keyword Associated Data Status Default
Vector parameter
study

vector_-
parameter_-
study

none Required group N/A

Step vector step_vector list of reals (index
offset components
are cast to integers)

Required group N/A

Number of steps
along vector

num_steps integer Required N/A

Table 5.44: step_vector specification detail for the vector parameter study

5.9.2 List parameter study

DAKOTA’s list parameter study allows for evaluations at user selected points of interest which need not follow any
particular structure. This study is selected using the list_parameter_study method specification followed
by a list_of_points specification.

The number of real values in the list_of_points specification must be a multiple of the total number of
variables (including continuous and discrete types) contained in the variables specification. This parameter study
simply performs simulations for the first parameter set (the first n entries in the list), followed by the next param-
eter set (the next n entries), and so on, until the list of points has been exhausted. Since the initial values from

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

126 Method Commands

the variables specification will not be used, they need not be specified. For discrete set types, the actual values
should be specified, not the set indices, although the values will be validated for membership within the set value
specifications. The list parameter study specification detail is given in Table 5.45.

Description Keyword Associated Data Status Default
List parameter
study

list_-
parameter_-
study

none Required group N/A

List of points to
evaluate

list_of_-
points

list of reals (actual
values; no set
indices)

Required N/A

Table 5.45: Specification detail for the list parameter study

5.9.3 Centered parameter study

DAKOTA’s centered parameter study computes response data sets along multiple coordinate-based vectors, one
per parameter, centered about the initial values from the variables specification. This is useful for investiga-
tion of function contours with respect to each parameter individually in the vicinity of a specific point (e.g.,
post-optimality analysis for verification of a minimum), thereby avoiding the cost associated with a multidi-
mensional grid. It is selected using the centered_parameter_study method specification followed by
step_vector and steps_per_variable specifications. The step_vector specification provides the
size of the increments for each variable (employed sequentially, not all at once as for Vector parameter study) in
either actual values (continuous and discrete range) or index offsets (discrete set). The steps_per_variable
specification provides the number of increments per variable (again, employed sequentially) in each of the plus
and minus directions. The centered parameter study specification detail is given in Table 5.46.

Description Keyword Associated Data Status Default
Centered
parameter study

centered_-
parameter_-
study

none Required group N/A

Step vector step_vector list of reals (index
offset components
are cast to integers)

Required group N/A

Number of steps
per variable

steps_per_-
variable

list of integers Required N/A

Table 5.46: Specification detail for the centered parameter study

5.9.4 Multidimensional parameter study

DAKOTA’s multidimensional parameter study computes response data sets for an n-dimensional grid of points.
Each continuous and discrete range variable is partitioned into equally spaced intervals between its upper and
lower bounds, each discrete set variable is partitioned into equally spaced index intervals, and each combination
of the values defined by the boundaries of these partitions is evaluated.

This study is selected using the multidim_parameter_study method specification followed by a
partitions specification, where the partitions list specifies the number of partitions for each variable.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

5.9 Parameter Study Methods 127

The number of entries in the partitions list must be equal to the total number of variables contained in the variables
specification. As for the vector and centered studies, remainders within the integer division of the step calcula-
tions are not permitted for discrete range or set types and therefore no integer rounding occurs, so the partitions
specification must be carefully selected in the presence of these types. Since the initial values from the variables
specification will not be used, they need not be specified. The multidimensional parameter study specification
detail is given in Table 5.47.

Description Keyword Associated Data Status Default
Multidimensional
parameter study

multidim_-
parameter_-
study

none Required group N/A

Partitions per
variable

partitions list of integers Required N/A

Table 5.47: Specification detail for the multidimensional parameter study

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

128 Method Commands

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 6

Model Commands

6.1 Model Description

The model specification in a DAKOTA input file specifies the components to be used in constructing a particu-
lar model instance. This specification selects a Model from the model hierarchy, which includes SingleModel,
DataFitSurrModel, HierarchSurrModel, and NestedModel derived classes. Depending on the type of derived
model, different sub-specifications are needed to construct different components of the model. In all cases, how-
ever, the model provides the logical unit for determining how a set of variables is mapped into a set of responses
in support of an iterative method.

Several examples follow. The first example shows a minimal specification for a single model.

model,
single

This example does not provide any pointers and therefore relies on the default behavior of constructing the model
with the last variables, interface, and responses specifications parsed. This is also the default model specification,
for the case where no model specifications are provided by the user.

The next example displays a surrogate model specification which selects a quadratic polynomial from among
the global approximation methods. It uses a pointer to a design of experiments method for generating the data
needed for building the global approximation, reuses any old data available for the current approximation region,
and employs the first-order multiplicative approach to correcting the approximation at the center of the current
approximation region.

model,
id_model = ’M1’
variables_pointer = ’V1’
responses_pointer = ’R1’
surrogate global

quadratic polynomial
dace_method_pointer = ’DACE’
reuse_samples region
correction multiplicative first_order

This example demonstrates the use of identifiers and pointers. It provides the optional model independent speci-
fications for model identifier, variables pointer, and responses pointer (see Model Independent Controls) as well

130 Model Commands

as model dependent specifications for global surrogates (see Global approximations).

Finally, an advanced nested model example would be

model,
id_model = ’M1’
variables_pointer = ’V1’
responses_pointer = ’R1’
nested

optional_interface_pointer = ’OI1’
optional_interface_responses_pointer = ’OIR1’

sub_method_pointer = ’SM1’
primary_variable_mapping = ’’ ’’ ’X’ ’Y’
secondary_variable_mapping = ’’ ’’ ’mean’ ’mean’
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 0.
secondary_response_mapping = 0. 0. 0. 1. 3. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 3. 0.

This example also supplies model independent controls for model identifier, variables pointer, and responses
pointer (see Model Independent Controls), and supplies model dependent controls for specifying details of the
nested mapping (see Nested Model Controls).

6.2 Model Specification

As alluded to in the examples above, the model specification has the following structure:

model,
<model independent controls>
<model selection>

<model dependent controls>

The <model independent controls> are those controls which are valid for all models. Referring to
dakota.input.summary, these controls are defined externally from and prior to the model selection blocks.
The model selection blocks are all required group specifications separated by logical OR’s, where the model
selection must be single OR surrogate OR nested. If a surrogate model is specified, a secondary
selection must be made for its type: global, multipoint, local, or hierarchical. The <model
dependent controls> are those controls which are only meaningful for a specific model. These controls
are defined within each model selection block. Defaults for model independent and model dependent controls
are defined in DataModel. The following sections provide additional detail on the model independent controls
followed by the model selections and their corresponding model dependent controls.

6.3 Model Independent Controls

The model independent controls include a model identifier string, pointers to variables and responses specifica-
tions, and a model type specification. The model identifier string is supplied with id_model and is used to
provide a unique identifier string for use within method specifications (refer to model_pointer in Method
Independent Controls).

The type of model can be single, nested, or surrogate. Each of these model specifications supports
variables_pointer and responses_pointer strings for identifying the variables and responses spec-
ifications used in constructing the model (by cross-referencing with id_variables and id_responses

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

6.4 Single Model Controls 131

strings from particular variables and responses keyword specifications). These pointers are valid for each model
type since each model contains a set of variables that is mapped into a set of responses – only the specifics of the
mapping differ. Additional pointers are used for each model type for constructing the components of the variable
to response mapping. As a strategy specification identifies one or more methods and a method specification iden-
tifies a model, a model specification identifies variables, interface, and responses specifications. This top-down
flow specifies all of the object interrelationships.

For each of these pointer specifications, if a pointer string is specified and no corresponding id string is available,
DAKOTA will exit with an error message. If the pointer is optional and no pointer string is specified, then the last
specification parsed will be used. It is appropriate to omit optional cross-referencing whenever the relationships
are unambiguous due to the presence of only one specification.

Table 6.1 provides the specification detail for the model independent controls involving identifiers, model type
controls, and pointers.

Description Keyword Associated Data Status Default
Model set
identifier

id_model string Optional method use of last
model parsed

Model type single |
surrogate |
nested

none Required group N/A (single if
no model
specification)

Variables set
pointer

variables_-
pointer

string Optional model use of last
variables parsed

Responses set
pointer

responses_-
pointer

string Optional model use of last
responses parsed

Table 6.1: Specification detail for the model independent controls: identifiers, model types, and pointers

6.4 Single Model Controls

In the single model case, a single interface is used to map the variables into responses. The optional
interface_pointer specification identifies this interface by cross-referencing with the id_interface
string input from a particular interface keyword specification.

Table 6.2 provides the specification detail for single models.

Description Keyword Associated Data Status Default
Interface set
pointer

interface_-
pointer

string Optional model use of last
interface parsed

Table 6.2: Specification detail for single models

6.5 Surrogate Model Controls

In the surrogate model case, the specification first allows a mixture of surrogate and actual response mappings
through the use of the optional id_surrogates specification. This identifies the subset of the response func-
tions by number that are to be approximated (the default is all functions). The valid response function identifiers

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

132 Model Commands

range from 1 through the total number of response functions (see Function Specification). Next, the specification
selects a global, multipoint, local, or hierarchical approximation. Table 6.3 provides the specification detail for
surrogate models.

Description Keyword Associated Data Status Default
Surrogate response
ids

id_-
surrogates

list of integers Optional All response
functions are
approximated

Surrogate type
selection

global |
multipoint |
local |
hierarchical

none Required group N/A

Table 6.3: Specification detail for the surrogate models

Each of these surrogate types provides an approximate representation of a "truth" model which is used to perform
the parameter to response mappings. This approximation is built and updated using data from the truth model.
This data is generated in some cases using a design of experiments iterator applied to the truth model (global
approximations with a dace_method_pointer). In other cases, truth model data from a single point (local,
hierarchical approximations), from a few previously evaluated points (multipoint approximations), or from the
restart database (global approximations with reuse_samples) can be used. Surrogate models are used exten-
sively in the surrogate-based optimization and least squares methods (see SurrBasedMinimizer and its derived
classes and Surrogate-Based Minimization Methods), in which the goals are to reduce expense by minimizing
the number of truth function evaluations and to smooth out noisy data with a global data fit. However, the use of
surrogate models is not restricted in any way to optimization techniques, and in fact, the uncertainty quantification
methods and optimization under uncertainty strategy are other primary users.

The following sections present the global, multipoint, local, or hierarchical specification groups
in further detail.

6.5.1 Global approximations

The global surrogate model specification requires the specification of one of the following approxima-
tion methods: gaussian_process, kriging, mars, moving_least_squares, neural_network,
polynomial, or radial_basis. These specifications invoke a gaussian process approximation, a kriging
interpolation approximation, a multivariate adaptive regression spline approximation, a moving least squares ap-
proximation, a layered perceptron artificial neural network approximation, a polynomial regression approxima-
tion, or a radial basis function approximation, respectively. In the polynomial case, the order of the polynomial
(linear, quadratic, or cubic) must be specified, and in the kriging case, a vector of correlations can be optionally
specified in order to bypass the internal kriging calculations of correlation coefficients. Note that the gaussian
process approximation is new, and currently always invokes an internal optimization procedure to determine the
correlation coefficients. The gaussian_process specification has two optional sub-specifications. Whereas
the kriging approximation has a constant trend function, the user can specify the trend function for the gaussian
process with the trend keyword. The trend can be constant, linear, or quadratic. The default trend is
quadratic. In addition, to avoid problems of ill-conditioning of the covariance matrix when the number of points
becomes large, we have an option for point_selection. This option calls a greedy algorithm that chooses
a subset of points with which to build the GP. These points are "optimal" in terms of creating a GP with low
prediction error. As a default, there is no point selection. Note that in general, one would not need point selection
in trust-region methods because only a small number of points are used to develop a surrogate within each trust
region. The point selection option will be most useful in cases where the GP is built on a "large" number of points,

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

6.5 Surrogate Model Controls 133

where large is more than a hundred or a few hundred points, depending on the number of variables and the spacing
of the sample points.

For each of the global surrogates, dace_method_pointer, reuse_samples, correction, and use_-
gradients can be optionally specified. The dace_method_pointer specification points to a design of
experiments iterator which can be used to generate truth model data for building a global data fit. The reuse_-
samples specification can be used to employ old data (either from previous function evaluations performed
in the run or from function evaluations read from a restart database or text file) in the building of new global
approximations. The default is no reuse of old data (since this can induce directional bias), and the settings
of all, region, and samples_file result in reuse of all available data, reuse of all data available in the
current trust region, and reuse of all data from a specified text file, respectively. The combination of new build
data from dace_method_pointer and old build data from reuse_samples must be sufficient for building
the global approximation. If not enough data is available, the system will abort with an error message. Both
dace_method_pointer and reuse_samples are optional specifications, which gives the user maximum
flexibility in using design of experiments data, restart/text file data, or both.

To assess the goodness of fit of a global surrogate, a variety of diagnostics are available for the following
global approximation methods: polynomial regressions, kriging, mars, moving least squares, neural networks,
and radial basis functions. The diagnostics are specified by the keyword diagnostics, followed by a list of
strings specifying the actual metrics. The diagnostic metrics available are: sum_squared, mean_squared,
root_mean_squared, max_squared, sum_scaled, max_scaled, sum_abs, mean_abs, max_abs,
press, cv, and rsquared. Most of these diagnostics refer to some operation on the residuals (the difference
between the surrogate model and the truth model at the data points upon which the surrogate is built). For ex-
ample, sum_squared refers to the sum of the squared residuals, mean_abs refers to the mean of the absolute
value of the residuals, and max_scaled refers to the maximum scaled value of the residual, where the scaled
value is taken by dividing the residual by the true function value at that point. In addition, press refers to a
leave-one-out cross validation metric, and cv refers to a general cross validation metric. rsquared refers to the
R-squared value typically used in regression analysis (the proportion of the variability in the response that can be
accounted for by the surrogate model).

The correction specification specifies that the approximation will be corrected to match truth data, either
matching truth values in the case of zeroth_order matching, matching truth values and gradients in the case
of first_order matching, or matching truth values, gradients, and Hessians in the case of second_order
matching. For additive and multiplicative corrections, the correction is local in that the truth data is
matched at a single point, typically the center of the approximation region. The additive correction adds a
scalar offset (zeroth_order), a linear function (first_order), or a quadratic function (second_order)
to the approximation to match the truth data at the point, and the multiplicative correction multiplies
the approximation by a scalar (zeroth_order), a linear function (first_order), or a quadratic func-
tion (second_order) to match the truth data at the point. The additive first_order case is due to
[Lewis and Nash, 2000] and the multiplicative first_order case is commonly known as beta correc-
tion [Haftka, 1991]. For the combined correction, the use of both additive and multiplicative corrections allows
the satisfaction of an additional matching condition, typically the truth function values at the previous correction
point (e.g., the center of the previous trust region). The combined correction is then a multipoint correction,
as opposed to the local additive and multiplicative corrections. Each of these correction capabilities is
described in detail in [Eldred et al., 2004a].

Finally, the use_gradients flag specifies a future capability for the use of gradient data in the global ap-
proximation builds. This capability is currently supported in SurrBasedLocalMinimizer, SurrogateDataPoint,
and Approximation::build(), but is not yet supported in any global approximation derived class redefinitions of
Approximation::find_coefficients(). Tables 6.4 and 6.5 summarizes the global approximation specifications.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

134 Model Commands

Description Keyword Associated Data Status Default
Global
approximations

global none Required group (1
of 4 selections)

N/A

Artificial neural
network

neural_-
network

none Required (1 of 7
selections)

N/A

ANN number
nodes

nodes integer Optional

ANN range range real Optional
ANN random
weight

random_-
weight

integer Optional

Gaussian process gaussian_-
process

none Required (1 of 7
selections)

N/A

GP point selection point_-
selection

none Optional no point selection

GP trend function trend constant |
linear |
quadratic

Optional quadratic trend

Kriging
interpolation

kriging none Required group (1
of 7 selections)

N/A

Kriging
correlations

correlations list of reals Optional internally
computed
correlations

Kriging inital
correlations

conmin_seed list of reals Optional vector of 1.0

Kriging maximum
trials

max_trials integer Optional

Kriging maximum
correlations

max_-
correlations

list of reals Optional

Kriging minimum
correlations

min_-
correlations

list of reals Optional

Multivariate
adaptive regression
splines

mars none Required (1 of 7
selections)

N/A

MARS maximum
bases

max_bases integer Optional

MARS
interpolation interpolation

linear | cubic Optional

Moving least
squares

moving_-
least_-
squares

none Required (1 of 7
selections)

N/A

MLS polynomial
order

poly_order integer Optional

MLS weight
function

weight_-
function

integer Optional

Polynomial polynomial linear |
quadratic |
cubic

Required group (1
of 7 selections)

N/A

Radial basis
functions

radial_-
basis_-
functions

none Required group (1
of 7 selections)

N/A

RBF number of
bases

bases integer Optional

RBF maximum
points

max_pts integer Optional

RBF minimum
partitions

min_-
partition

integer Optional

RBF maximum
subsets

bases integer Optional

Table 6.4: Specification detail for global approximations: global approximation type

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

6.5 Surrogate Model Controls 135

Description Keyword Associated Data Status Default
Design of
experiments
method pointer

dace_-
method_-
pointer

string Optional no design of
experiments data

Sample reuse in
global
approximation

reuse_-
samples

all | region |
none

Optional group all if
samples_file
defined, none
otherwise

File import of
samples for global
approximation
builds

samples_file string Optional no sample import
from a file

Surrogate
correction
approach

correction additive or
multiplicative
or combined,
zeroth_order
or first_order
or
second_order

Optional group no surrogate
correction

Use of gradient
data in global
approximation
builds

use_-
gradients

none Optional gradient data not
used in global
approximation
builds

Print diagnostic
metrics about the
surrogate goodness
of fit

diagnostics string list (as many
as desired):
sum_squared,
mean_squared,
root_mean_-
squared,
max_squared,
sum_scaled,
max_scaled,
sum_abs,
mean_abs,
max_abs,
press, cv, and
rsquared

Optional No diagnostics
printed

Table 6.5: Specification detail for global approximations: build and correction controls

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

136 Model Commands

6.5.2 Multipoint approximations

Multipoint approximations use data from previous design points to improve the accuracy of local approximations.
Currently, the Two-point Adaptive Nonlinearity Approximation (TANA-3) method of [Xu and Grandhi, 1998]
is supported. This method requires response value and gradient information from two points, and uses a first-
order Taylor series if only one point is available. The truth model to be used to generate the value/gradient data
used in the approximation is identified through the required actual_model_pointer specification. Table
6.6 summarizes the multipoint approximation specifications.

Description Keyword Associated Data Status Default
Multipoint
approximation

multipoint none Required group (1
of 4 selections)

N/A

Two-point adaptive
nonlinear
approximation

tana none Required N/A

Pointer to the truth
model specification

actual_-
model_-
pointer

string Required N/A

Table 6.6: Specification detail for multipoint approximations

6.5.3 Local approximations

Local approximations use value, gradient, and possibly Hessian data from a single point to form a series expansion
for approximating data in the vicinity of this point. The currently available local approximation is the taylor_-
series selection. The order of the Taylor series may be either first-order or second-order, which is automatically
determined from the gradient and Hessian specifications in the responses specification (see Gradient Specification
and Hessian Specification) for the truth model.

The truth model to be used to generate the value/gradient/Hessian data used in the series expansion is identified
through the required actual_model_pointer specification. The use of a model pointer (as opposed to an
interface pointer) allows additional flexibility in defining the approximation. In particular, the derivative specifi-
cation for the truth model may differ from the derivative specification for the approximation , and the truth model
results being approximated may involve a model recursion (e.g., the values/gradients from a nested model). Table
6.7 summarizes the local approximation interface specifications.

Description Keyword Associated Data Status Default
Local
approximation

local none Required group (1
of 4 selections)

N/A

Taylor series local
approximation

taylor_-
series

none Required N/A

Pointer to the truth
model specification

actual_-
model_-
pointer

string Required N/A

Table 6.7: Specification detail for local approximations

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

6.6 Nested Model Controls 137

6.5.4 Hierarchical approximations

Hierarchical approximations use corrected results from a low fidelity model as an approximation to the results
of a high fidelity "truth" model. These approximations are also known as model hierarchy, multifidelity, variable
fidelity, and variable complexity approximations. The required low_fidelity_model_pointer specifica-
tion points to the low fidelity model specification. This model is used to generate low fidelity responses which
are then corrected and returned to an iterator. The required high_fidelity_model_pointer specification
points to the specification for the high fidelity truth model. This model is used only for verifying low fidelity re-
sults and updating low fidelity corrections. The correction specification specifies which correction technique
will be applied to the low fidelity results in order to match the high fidelity results at one or more points. In the
hierarchical case (as compared to the global case), the correction specification is required, since the omission
of a correction technique would effectively eliminate the purpose of the high fidelity model. If it is desired to use
a low fidelity model without corrections, then a hierarchical approximation is not needed and a single model
should be used. Refer to Global approximations for additional information on available correction approaches.
Table 6.8 summarizes the hierarchical approximation specifications.

Description Keyword Associated Data Status Default
Hierarchical
approximation

hierarchical none Required group (1
of 4 selections)

N/A

Pointer to the low
fidelity model
specification

low_-
fidelity_-
model_-
pointer

string Required N/A

Pointer to the high
fidelity model
specification

high_-
fidelity_-
model_-
pointer

string Required N/A

Surrogate
correction
approach

correction additive or
multiplicative
or combined,
zeroth_order
or first_order
or
second_order

Required group N/A

Table 6.8: Specification detail for hierarchical approximations

6.6 Nested Model Controls

In the nested model case, a sub_method_pointer must be provided in order to specify the nested iter-
ator, and optional_interface_pointer and optional_interface_responses_pointer pro-
vide an optional group specification for the optional interface portion of nested models (where optional_-
interface_pointer points to the interface specification and optional_interface_responses_-
pointer points to a responses specification describing the data to be returned by this interface). This inter-
face is used to provide non-nested data, which is then combined with data from the nested iterator using the
primary_response_mapping and secondary_response_mapping inputs (see mapping discussion
below).

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

138 Model Commands

Table 6.9 provides the specification detail for nested model pointers.

Description Keyword Associated Data Status Default
Optional interface
set pointer

optional_-
interface_-
pointer

string Optional group no optional
interface

Responses pointer
for nested model
optional interfaces

optional_-
interface_-
responses_-
pointer

string Optional reuse of top-level
responses
specification

Sub-method
pointer for nested
models

sub_method_-
pointer

string Required N/A

Table 6.9: Specification detail for nested models

Nested models may employ mappings for both the variable inputs to the sub-model and the response outputs from
the sub-model. In the former case, the primary_variable_mapping and secondary_variable_-
mapping specifications are used to map from the active top-level variables into the sub-model variables, and in
the latter case, the primary_response_mapping and secondary_response_mapping specifications
are used to compute the sub-model response contributions to the top-level responses. For the variable mappings,
the primary and secondary specifications provide lists of strings which are used to target specific sub-model vari-
ables and their sub-parameters, respectively. The primary strings are matched to continuous or discrete variable
labels such as ’cdv_1’ (either user-supplied or default labels), and the secondary strings are matched to either
real or integer random variable distribution parameters such as ’mean’ or ’num_trials’ (the form of the un-
certain distribution parameter keyword that is appropriate for a single variable instance) or continuous or discrete
design/state variable sub-parameters such as ’lower_bound’ or ’upper_bound’ (again, keyword form ap-
propriate for a single variable instance). No coersion of types is supported, so real-valued top-level variables
should map to either real-valued sub-model variables or real-valued sub-parameters and integer-valued top-level
variables should map to either integer-valued sub-model variables or integer-valued sub-parameters. As long
as these real versus integer constraints are satisfied, mappings are free to cross variable types (design, aleatory
uncertain, epistemic uncertain, state) and domain types (continuous, discrete). Both primary_variable_-
mapping and secondary_variable_mapping specifications are optional, which is designed to support
the following three possibilities:

1. If both primary and secondary variable mappings are specified, then an active top-level variable value will
be inserted into the identified sub-parameter (the secondary mapping) for the identified sub-model variable
(the primary mapping).

2. If a primary mapping is specified but a secondary mapping is not, then an active top-level variable value
will be inserted into the identified sub-model variable value (the primary mapping).

3. If a primary mapping is not specified (corresponding secondary mappings, if specified, are ignored),
then an active top-level variable value will be inserted into a corresponding sub-model variable, based
on matching of variable types (e.g., top-level and sub-model variable specifications both allocate a set of
’continuous_design’ variables which are active at the top level). Multiple sub-model variable types
may be updated in this manner, provided that they are all active in the top-level variables. Since there is a
direct variable correspondence for these default insertions, sub-model bounds and labels are also updated
from the top-level bounds and labels in order to eliminate the need for redundant input file specifications.
Thus, it is typical for the sub-model variables specification to only contain the minimal required informa-
tion, such as the number of variables, for these insertion targets. The sub-model must allocate enough space

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

6.6 Nested Model Controls 139

for each of the types that will accept default insertions, and the leading set of matching sub-model variables
are updated (i.e., the sub-model may allocate more than needed and the trailing set will be unmodified).

These different variable mapping possibilities may be used in any combination by employing empty strings (”)
for particular omitted mappings (the number of strings in user-supplied primary and secondary variable mapping
specifications must equal the total number of active top-level variables, including both continuous and discrete
types). The ordering of the active variables is the same as shown in dakota.input.summary and as presented
in Variables Commands.

For the response mappings, the primary and secondary specifications provide real-valued multipliers to be applied
to sub-iterator response results. The sub-iterator response results are defined as follows for different sub-iterator
types:

• optimization: the final objective function(s) and nonlinear constraints

• nonlinear least squares: the final least squares terms and nonlinear constraints

• aleatory uncertainty quantification (UQ): for each response function, a mean statistic, a standard de-
viation statistic, and all probability/reliability/generalized reliability/response level results for any user-
specified response_levels, probability_levels, reliability_levels, and/or gen_-
reliability_levels, in that order.

• epistemic and mixed aleatory/epistemic UQ using interval estimation methods: lower and upper interval
bounds for each response function.

• epistemic and mixed aleatory/epistemic UQ using evidence methods: for each response function, lower
and upper interval bounds (belief and plausibility) for all probability/reliability/generalized reliabil-
ity/response level results computed from any user-specified response_levels, probability_-
levels, reliability_levels, and/or gen_reliability_levels, in that order.

• parameter studies and design of experiments: for optimization and least squares response data sets, the best
solution found (lowest constraint violation if infeasible, lowest composite objective function if feasible).
For generic response data sets, a best solution metric is not defined, so sub-iterator response results are not
defined in this case.

The primary values map sub-iterator response results into top-level objective functions, least squares terms,
or generic response functions, depending on the declared top-level response set. The secondary values map
sub-iterator response results into top-level nonlinear inequality and equality constraints. Refer to Nested-
Model::response_mapping() for additional details.

An example of variable and response mappings is provided below:

primary_variable_mapping = ’’ ’’ ’X’ ’Y’
secondary_variable_mapping = ’’ ’’ ’mean’ ’mean’
primary_response_mapping = 1. 0. 0. 0. 0. 0. 0. 0. 0.
secondary_response_mapping = 0. 0. 0. 1. 3. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 3. 0.

The variable mappings correspond to 4 top-level variables, the first two of which employ the default mappings
from active top-level variables to sub-model variables of the same type (option 3 above) and the latter two of
which are inserted into the mean distribution parameters of sub-model variables ’X’ and ’Y’ (option 1 above).
The response mappings correspond to 9 sub-iterator response functions (e.g., a set of UQ final statistics for

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

140 Model Commands

3 response functions, each with a mean, a standard deviation, and a level mapping). The primary response
mapping maps the first sub-iterator response function (mean) into a single objective function, least squares term,
or generic response function (as dictated by the top-level response specification), and the secondary response
mapping maps the fourth sub-iterator response function plus 3 times the fifth sub-iterator response function (mean
plus 3 standard deviations) into one top-level nonlinear constraint and the seventh sub-iterator response function
plus 3 times the eighth sub-iterator response function (mean plus 3 standard deviations) into another top-level
nonlinear constraint (these top-level nonlinear constraints may be inequality or equality, as dictated by the top-
level response specification).

Table 6.10 provides the specification detail for the model independent controls involving nested model mappings.

Description Keyword Associated Data Status Default
Primary variable
mappings for
nested models

primary_-
variable_-
mapping

list of strings Optional default variable
insertions based on
variable type

Secondary variable
mappings for
nested models

secondary_-
variable_-
mapping

list of strings Optional primary mappings
into sub-model
variables are
value-based

Primary response
mappings for
nested models

primary_-
response_-
mapping

list of reals Optional no sub-iterator
contribution to
primary functions

Secondary
response mappings
for nested models

secondary_-
response_-
mapping

list of reals Optional no sub-iterator
contribution to
secondary
functions

Table 6.10: Specification detail for the model independent controls: nested model mappings

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 7

Variables Commands

7.1 Variables Description

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a particular method.
This parameter set is made up of design, uncertain, and state variables. Design variables can be continuous or
discrete and consist of those variables which an optimizer adjusts in order to locate an optimal design. Each of
the design parameters can have an initial point and a descriptive tag. Continuous and discrete range types include
lower and upper bounds, and discrete set types include the admissible set values.

Uncertain variables may be categorized as either aleatory or epistemic and either continuous or discrete. Contin-
uous aleatory uncertain variables include normal, lognormal, uniform, loguniform, triangular, exponential, beta,
gamma, gumbel, frechet, weibull, and histogram bin distributions. Discrete aleatory uncertain variables include
poisson, binomial, negative binomial, geometric, hypergeometric, and histogram point distributions. In addition
to aleatory uncertain variables defined by probability distributions, DAKOTA also supports epistemic uncertain
variables that are non-probabilistic. The interval type specification is a continuous epistemic type that supports
both simple bounded intervals as well as basic probability assignment (BPA) belief structures, where a BPA de-
fines the uncertainty in a variable through providing one or more intervals in which the variable may lie along
with varying levels of belief for each interval.

Each uncertain variable specification contains descriptive tags and most contain, either explicitly or implicitly,
distribution lower and upper bounds. Distribution lower and upper bounds are explicit portions of the normal, log-
normal, uniform, loguniform, triangular, and beta specifications, whereas they are implicitly defined for histogram
bin, histogram point, and interval variables (from the extreme values within the bin/point/interval specifications)
as well as for binomial (0 to num_trials) and hypergeometric (0 to min(num_drawn, num_selected))
variables. When used with design of experiments and multidimensional parameter studies, distribution bounds
are also inferred for normal and lognormal (if optional bounds are unspecified) as well as for exponential, gamma,
gumbel, frechet, weibull, poisson, negative binomial, and geometric (which have no bounds specifications); these
bounds are [0, µ + 3σ] for exponential, gamma, frechet, weibull, poisson, negative binomial, geometric, and
unspecified lognormal, and [µ − 3σ, µ + 3σ] for gumbel and unspecified normal. For other types of parameter
studies (vector and centered), an inferred initial starting point is needed for the uncertain variables. All uncertain
variables are initialized to their means for these studies, where mean values for bounded normal and bounded
lognormal may additionally be repaired to satisfy any specified distribution bounds, mean values for discrete inte-
ger range distributions are rounded down to the nearest integer, and mean values for discrete set distributions are
rounded to the nearest set value.

142 Variables Commands

In addition to tags and bounds specifications, normal variables include mean and standard deviation specifications,
lognormal variables include lambda and zeta, mean and standard deviation, or mean and error factor specifications,
triangular variables include mode specifications, exponential variables include beta specifications, beta, gamma,
gumbel, frechet, and weibull variables include alpha and beta specifications, histogram bin variables include ab-
scissa and either ordinate or count specifications, poisson variables include lambda specifications, binomial and
negative binomial variables include probability per trial and number of trials specifications, geometric variables
include probability per trial specifications, hypergeometric variables include the specification of the total popula-
tion, selected population, and number drawn, histogram point variables include abscissa and count specifications,
and interval variables include basic probability assignments per interval.

State variables can be continuous or discrete and consist of "other" variables which are to be mapped through
the simulation interface. Each state variable specification can have an initial state and descriptors. Continuous
and discrete range types include lower and upper bounds, and discrete set types include the admissible set values.
State variables provide a convenient mechanism for parameterizing additional model inputs, such as mesh density,
simulation convergence tolerances and time step controls, and can be used to enact model adaptivity in future
strategy developments.

The ordering of variables is important, and a consistent ordering is employed throughout the DAKOTA software.
It is the same ordering as shown in dakota.input.summary and as presented in the outline of this chapter.
That ordering can be summarized as continuous followed by discrete integer followed by discrete real within
each of the following types: design, aleatory uncertain, epistemic uncertain, and state. Ordering of variable
types below this granularity (e.g., from normal to histogram bin within continuous aleatory uncertain) is defined
somewhat arbitrarily, but is enforced consistently throughout the code.

Several examples follow. In the first example, two continuous design variables are specified:

variables,
continuous_design = 2

initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’radius’ ’location’

In the next example, defaults are employed. In this case, initial_point will default to a vector of 0. val-
ues, upper_bounds will default to vector values of DBL_MAX (the maximum number representable in double
precision for a particular platform, as defined in the platform’s float.h C header file), lower_bounds will
default to a vector of -DBL_MAX values, and descriptors will default to a vector of ’cdv_i’ strings, where
i ranges from one to two:

variables,
continuous_design = 2

In the following example, the syntax for a normal-lognormal distribution is shown. One normal and one lognormal
uncertain variable are completely specified by their means and standard deviations. In addition, the dependence
structure between the two variables is specified using the uncertain_correlation_matrix.

variables,
normal_uncertain = 1

means = 1.0
std_deviations = 1.0
descriptors = ’TF1n’

lognormal_uncertain = 1
means = 2.0

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

7.2 Variables Specification 143

std_deviations = 0.5
descriptors = ’TF2ln’

uncertain_correlation_matrix = 1.0 0.2
0.2 1.0

An example of the syntax for a state variables specification follows:

variables,
continuous_state = 1

initial_state 4.0
lower_bounds 0.0
upper_bounds 8.0
descriptors ’CS1’

discrete_state_range = 1
initial_state 104
lower_bounds 100
upper_bounds 110
descriptors ’DS1’

And in a more advanced example, a variables specification containing a set identifier, continuous and discrete
design variables, normal and uniform uncertain variables, and continuous and discrete state variables is shown:

variables,
id_variables = ’V1’
continuous_design = 2

initial_point 0.9 1.1
upper_bounds 5.8 2.9
lower_bounds 0.5 -2.9
descriptors ’radius’ ’location’

discrete_design_range = 1
initial_point 2
upper_bounds 1
lower_bounds 3
descriptors ’material’

normal_uncertain = 2
means = 248.89, 593.33
std_deviations = 12.4, 29.7
descriptors = ’TF1n’ ’TF2n’

uniform_uncertain = 2
lower_bounds = 199.3, 474.63
upper_bounds = 298.5, 712.
descriptors = ’TF1u’ ’TF2u’

continuous_state = 2
initial_state = 1.e-4 1.e-6
descriptors = ’EPSIT1’ ’EPSIT2’

discrete_state_set_int = 1
initial_state = 100
set_values = 100 212 375
descriptors = ’load_case’

Refer to the DAKOTA Users Manual [Adams et al., 2010] for discussion on how different iterators view these
mixed variable sets.

7.2 Variables Specification

The variables specification has the following structure:

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

144 Variables Commands

variables,
<set identifier>
<continuous design variables specification>
<discrete design range variables specification>
<discrete design set integer variables specification>
<discrete design set real variables specification>
<normal uncertain variables specification>
<lognormal uncertain variables specification>
<uniform uncertain variables specification>
<loguniform uncertain variables specification>
<triangular uncertain variables specification>
<exponential uncertain variables specification>
<beta uncertain variables specification>
<gamma uncertain variables specification>
<gumbel uncertain variables specification>
<frechet uncertain variables specification>
<weibull uncertain variables specification>
<histogram bin uncertain variables specification>
<poisson uncertain variables specification>
<binomial uncertain variables specification>
<negative binomial uncertain variables specification>
<geometric uncertain variables specification>
<hypergeometric uncertain variables specification>
<histogram point uncertain variables specification>
<uncertain correlation specification>
<interval uncertain variables specification>
<continuous state variables specification>
<discrete state range variables specification>
<discrete state set integer variables specification>
<discrete state set real variables specification>

Referring to dakota.input.summary, it is evident from the enclosing brackets that the set identifier speci-
fication, the uncertain correlation specification, and each of the variables specifications are all optional. The set
identifier and uncertain correlation are stand-alone optional specifications, whereas the variables specifications are
optional group specifications, meaning that the group can either appear or not as a unit. If any part of an optional
group is specified, then all required parts of the group must appear.

The optional status of the different variable type specifications allows the user to specify only those variables
which are present (rather than explicitly specifying that the number of a particular type of variables is zero).
However, at least one type of variables that are active for the iterator in use must have nonzero size or an input
error message will result. The following sections describe each of these specification components in additional
detail.

7.3 Variables Set Identifier

The optional set identifier specification uses the keyword id_variables to input a unique string for use in
identifying a particular variables set. A model can then identify the use of this variables set by specifying the
same string in its variables_pointer specification (see Model Independent Controls). For example, a model
whose specification contains variables_pointer = ’V1’ will use a variables specification containing the
set identifier id_variables = ’V1’.

If the id_variables specification is omitted, a particular variables set will be used by a model only if that
model omits specifying a variables_pointer and if the variables set was the last set parsed (or is the only
set parsed). In common practice, if only one variables set exists, then id_variables can be safely omitted
from the variables specification and variables_pointer can be omitted from the model specification(s),

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

7.4 Design Variables 145

since there is no potential for ambiguity in this case. Table 7.1 summarizes the set identifier inputs.

Description Keyword Associated Data Status Default
Variables set
identifier

id_variables string Optional use of last
variables parsed

Table 7.1: Specification detail for set identifier

7.4 Design Variables

Design variable types include continuous real, discrete range of integer values (contiguous integers), discrete set
of integer values, and discrete set of real values. Within each optional design variables specification group, the
number of variables is always required. The following Tables 7.2 through 7.5 summarize the required and optional
specifications for each design variable subtype. The initial_point specifications provide the point in design
space from which an iterator is started and default to either zeros (continuous and discrete range) or middle values
(discrete sets). The descriptors specifications supply strings which will be replicated through the DAKOTA
output to identify the numerical values for these parameters; these default to numbered strings.

For continuous and discrete range variables, the lower_bounds and upper_bounds restrict the size of the
feasible design space and are frequently used to prevent nonphysical designs. Default values are positive and
negative machine limits for upper and lower bounds (+/- DBL_MAX, INT_MAX, INT_MIN from the float.h
and limits.h system header files). As for linear and nonlinear inequality constraint bounds (see Method
Independent Controls and Objective and constraint functions (optimization data set)), a nonexistent upper bound
can be specified by using a value greater than the "big bound size" constant (1.e+30 for continuous variables,
1.e+9 for discrete integer variables) and a nonexistent lower bound can be specified by using a value less than
the negation of these constants (-1.e+30 for continuous, -1.e+9 for discrete integer), although not all optimizers
currently support this feature (e.g., DOT and CONMIN will treat these large bound values as actual variable
bounds, but this should not be problematic in practice).

7.4.1 Continuous Design Variables

For continuous variables, the scale_types specification includes strings specifying the scaling type for each
component of the continuous design variables vector in methods that support scaling, when scaling is enabled
(see Method Independent Controls for details). Each entry in scale_types may be selected from ’none’,
’value’, ’auto’, or ’log’, to select no, characteristic value, automatic, or logarithmic scaling, respectively.
If a single string is specified it will apply to all components of the continuous design variables vector. Each entry in
scales may be a user-specified nonzero real characteristic value to be used in scaling each variable component.
These values are ignored for scaling type ’none’, required for ’value’, and optional for ’auto’ and ’log’.
If a single real value is specified it will apply to all components of the continuous design variables vector.

7.4.2 Discrete Design Range Variables

7.4.3 Discrete Design Integer Set Variables

Discrete set variables are specified with an integer list specifying how many set members there are for each
variable and a list of integer or real set values for discrete_design_set_integer (Table 7.4) and
discrete_design_set_real (Table 7.5), respectively.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

146 Variables Commands

Description Keyword Associated Data Status Default
Continuous design
variables

continuous_-
design

integer Optional group no continuous
design variables

Initial point initial_-
point

list of reals Optional vector values = 0.
(repaired to
bounds, if
required)

Lower bounds lower_bounds list of reals Optional vector values =
-DBL_MAX

Upper bounds upper_bounds list of reals Optional vector values =
+DBL_MAX

Scaling types scale_types list of strings Optional vector values =
’none’

Scales scales list of reals Optional vector values = 1.
(no scaling)

Descriptors descriptors list of strings Optional vector of
’cdv_i’ where i
= 1,2,3...

Table 7.2: Specification detail for continuous design variables

Description Keyword Associated Data Status Default
Discrete design
range variables

discrete_-
design_range

integer Optional group no discrete design
variables

Initial point initial_-
point

list of integers Optional vector values = 0
(repaired to
bounds, if
required)

Lower bounds lower_bounds list of integers Optional vector values =
INT_MIN

Upper bounds upper_bounds list of integers Optional vector values =
INT_MAX

Descriptors descriptors list of strings Optional vector of
’ddriv_i’
where i =
1,2,3,...

Table 7.3: Specification detail for discrete design range variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 147

Description Keyword Associated Data Status Default
Discrete design set
of integer variables

discrete_-
design_set_-
integer

integer Optional group no discrete design
set of integer
variables

Initial point initial_-
point

list of integers Optional middle set values
(mean indices,
rounded down)

Number of values
for each variable

num_set_-
values

list of integers Optional equal distribution

Set values set_values list of integers Required N/A
Descriptors descriptors list of strings Optional vector of

’ddsiv_i’
where i =
1,2,3,...

Table 7.4: Specification detail for discrete design set of integer variables

7.4.4 Discrete Design Real Set Variables

Description Keyword Associated Data Status Default
Discrete design set
of real variables

discrete_-
design_set_-
real

integer Optional group no discrete design
set of real variables

Initial point initial_-
point

list of reals Optional middle set values
(mean indices,
rounded down)

Number of values
for each variable

num_set_-
values

list of integers Optional equal distribution

Set values set_values list of reals Required N/A
Descriptors descriptors list of strings Optional vector of

’ddsrv_i’
where i =
1,2,3,...

Table 7.5: Specification detail for discrete design set of real variables

7.5 Aleatory Uncertain Variables

Aleatory uncertain variables involve continuous or discrete probability distribution specifications. Continuous
probability distributions including normal, lognormal, uniform, loguniform, triangular, exponential, beta, gamma,
gumbel, frechet, weibull, and histogram bin distributions. Discrete probability distributions include poisson,
binomial, negative binomial, geometric, hypergeometric, and histogram point distributions. Each of these specifi-
cations is an optional group specification.

These specifications of probability distributions directly support the use of probabilistic uncertainty quantification
methods such as sampling, reliability, and stochastic expansion methods. However, the inclusion of lower and
upper distribution bounds for all uncertain variable types (either explicitly defined, implicitly defined, or inferred;

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

148 Variables Commands

see Variables Description) also allows the use of these variables within methods that rely on a bounded region
to define a set of function evaluations (i.e., design of experiments and some parameter study methods). Each
distribution also provides optional uncertain variable descriptors (default values are numbered strings) that sup-
ply identifiers that help associate the numerical values with the uncertain parameters as they appear within the
DAKOTA output. Tables 7.6 through 7.23 summarize the details of the aleatory uncertain variable specifications.

7.5.1 Normal Distribution

Within the normal uncertain optional group specification, the number of normal uncertain variables, the means,
and standard deviations are required specifications, and the distribution lower and upper bounds and variable
descriptors are optional specifications. The normal distribution is widely used to model uncertain variables such
as population characteristics. It is also used to model the mean of a sample: as the sample size becomes very large,
the Central Limit Theorem states that the mean becomes approximately normal, regardless of the distribution of
the original variables.

The density function for the normal distribution is:

f(x) =
1√

2πσN

e
− 1

2

(
x−µN

σN

)2

where µN and σN are the mean and standard deviation of the normal distribution, respectively.

Note that if you specify bounds for a normal distribution, the sampling occurs from the underlying distribution
with the given mean and standard deviation, but samples are not taken outside the bounds (see "bounded normal"
distribution type in [Wyss and Jorgensen, 1998]). This can result in the mean and the standard deviation of the
sample data being different from the mean and standard deviation of the underlying distribution. For example,
if you are sampling from a normal distribution with a mean of 5 and a standard deviation of 3, but you specify
bounds of 1 and 7, the resulting mean of the samples will be around 4.3 and the resulting standard deviation will
be around 1.6. This is because you have bounded the original distribution significantly, and asymetrically, since 7
is closer to the original mean than 1.

Description Keyword Associated Data Status Default
normal uncertain
variables

normal_-
uncertain

integer Optional group no normal
uncertain variables

normal uncertain
means

means list of reals Required N/A

normal uncertain
standard deviations

std_-
deviations

list of reals Required N/A

Distribution lower
bounds

lower_bounds list of reals Optional vector values =
-DBL_MAX

Distribution upper
bounds

upper_bounds list of reals Optional vector values =
+DBL_MAX

Descriptors descriptors list of strings Optional vector of
’nuv_i’ where i
= 1,2,3,...

Table 7.6: Specification detail for normal uncertain variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 149

7.5.2 Lognormal Distribution

If the logarithm of an uncertain variable X has a normal distribution, that is log X ∼ N(µ, σ), then X is distributed
with a lognormal distribution. The lognormal is often used to model time to perform some task. It can also
be used to model variables which are the product of a large number of other quantities, by the Central Limit
Theorem. Finally, the lognormal is used to model quantities which cannot have negative values. Within the
lognormal uncertain optional group specification, the number of lognormal uncertain variables, the means, and
either standard deviations or error factors must be specified, and the distribution lower and upper bounds and
variable descriptors are optional specifications. These distribution bounds can be used to truncate the tails of
lognormal distributions, which as for bounded normal, can result in the mean and the standard deviation of the
sample data being different from the mean and standard deviation of the underlying distribution (see "bounded
lognormal" and "bounded lognormal-n" distribution types in [Wyss and Jorgensen, 1998]).

For the lognormal variables, one may specify either the mean µ and standard deviation σ of the actual lognormal
distribution, the mean µ and error factor ε of the actual lognormal distribution, or the mean λ ("lambda") and
standard deviation ζ ("zeta") of the underlying normal distribution. The conversion equations from lognormal
mean µ and either lognormal error factor ε or lognormal standard deviation σ to the mean λ and standard deviation
ζ of the underlying normal distribution are as follows:

ζ =
ln(ε)
1.645

ζ2 = ln(
σ2

µ2
+ 1)

λ = ln(µ)− ζ2

2

Conversions from λ and ζ back to µ and ε or σ are as follows:

µ = eλ+ ζ2

2

σ2 = e2λ+ζ2
(eζ2

− 1)

ε = e1.645ζ

The density function for the lognormal distribution is:

f(x) =
1√

2πζx
e−

1
2 (lnx−λ

ζ)2

7.5.3 Uniform Distribution

Within the uniform uncertain optional group specification, the number of uniform uncertain variables and the dis-
tribution lower and upper bounds are required specifications, and variable descriptors is an optional specification.
The uniform distribution has the density function:

f(x) =
1

UU − LU

where UU and LU are the upper and lower bounds of the uniform distribution, respectively. The mean of the
uniform distribution is UU+LU

2 and the variance is (UU−LU)2

12 . Note that this distribution is a special case of the
more general beta distribution.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

150 Variables Commands

Description Keyword Associated Data Status Default
lognormal
uncertain variables

lognormal_-
uncertain

integer Optional group no lognormal
uncertain variables

lognormal
uncertain means

means list of reals Required (1 of 3
selections)

N/A

lognormal
uncertain standard
deviations

std_-
deviations

list of reals Required (1 of 3
selections)

N/A

lognormal
uncertain error
factors

error_-
factors

list of reals Required (1 of 3
selections)

N/A

lognormal
uncertain lambdas

lambdas list of reals Required (1 of 3
selections)

N/A

lognormal
uncertain zetas

zetas list of reals Required (1 of 3
selections)

N/A

Distribution lower
bounds

lower_bounds list of reals Optional vector values = 0.

Distribution upper
bounds

upper_bounds list of reals Optional vector values =
+DBL_MAX

Descriptors descriptors list of strings Optional vector of
’lnuv_i’ where
i =
1,2,3,...

Table 7.7: Specification detail for lognormal uncertain variables

Description Keyword Associated Data Status Default
uniform uncertain
variables

uniform_-
uncertain

integer Optional group no uniform
uncertain variables

Distribution lower
bounds

lower_bounds list of reals Required N/A

Distribution upper
bounds

upper_bounds list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’uuv_i’ where i
= 1,2,3,...

Table 7.8: Specification detail for uniform uncertain variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 151

7.5.4 Loguniform Distribution

If the logarithm of an uncertain variable X has a uniform distribution, that is log X ∼ U(LLU , ULU), then X
is distributed with a loguniform distribution. Within the loguniform uncertain optional group specification, the
number of loguniform uncertain variables and the distribution lower and upper bounds are required specifications,
and variable descriptors is an optional specification. The loguniform distribution has the density function:

f(x) =
1

x(lnULU − lnLLU)

Description Keyword Associated Data Status Default
loguniform
uncertain variables

loguniform_-
uncertain

integer Optional group no loguniform
uncertain variables

Distribution lower
bounds

lower_bounds list of reals Required N/A

Distribution upper
bounds

upper_bounds list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’luuv_i’ where
i =
1,2,3,...

Table 7.9: Specification detail for loguniform uncertain variables

7.5.5 Triangular Distribution

The triangular distribution is often used when one does not have much data or information, but does have an
estimate of the most likely value and the lower and upper bounds. Within the triangular uncertain optional group
specification, the number of triangular uncertain variables, the modes, and the distribution lower and upper bounds
are required specifications, and variable descriptors is an optional specification.

The density function for the triangular distribution is:

f(x) =
2(x− LT)

(UT − LT)(MT − LT)

if LT ≤ x ≤ MT , and

f(x) =
2(UT − x)

(UT − LT)(UT −MT)

if MT ≤ x ≤ UT , and 0 elsewhere. In these equations, LT is the lower bound, UT is the upper bound, and MT is
the mode of the triangular distribution.

7.5.6 Exponential Distribution

The exponential distribution is often used for modeling failure rates. Within the exponential uncertain optional
group specification, the number of exponential uncertain variables and the beta parameters are required specifica-
tions, and variable descriptors is an optional specification.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

152 Variables Commands

Description Keyword Associated Data Status Default
triangular
uncertain variables

triangular_-
uncertain

integer Optional group no triangular
uncertain variables

triangular
uncertain modes

modes list of reals Required N/A

Distribution lower
bounds

lower_bounds list of reals Required N/A

Distribution upper
bounds

upper_bounds list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’tuv_i’ where i
= 1,2,3,...

Table 7.10: Specification detail for triangular uncertain variables

The density function for the exponential distribution is given by:

f(x) =
1
β

e
−x
β

where µE = β and σ2
E = β2. Note that this distribution is a special case of the more general gamma distribution.

Description Keyword Associated Data Status Default
exponential
uncertain variables exponential_-

uncertain

integer Optional group no exponential
uncertain variables

exponential
uncertain betas

betas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’euv_i’ where i
= 1,2,3,...

Table 7.11: Specification detail for exponential uncertain variables

7.5.7 Beta Distribution

Within the beta uncertain optional group specification, the number of beta uncertain variables, the alpha and beta
parameters, and the distribution upper and lower bounds are required specifications, and the variable descriptors is
an optional specification. The beta distribution can be helpful when the actual distribution of an uncertain variable
is unknown, but the user has a good idea of the bounds, the mean, and the standard deviation of the uncertain
variable. The density function for the beta distribution is

f(x) =
Γ(α + β)
Γ(α)Γ(β)

(x− LB)α−1(UB − x)β−1

(UB − LB)α+β−1

where Γ(α) is the gamma function and B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function. To calculate mean and standard

deviation from the alpha, beta, upper bound, and lower bound parameters of the beta distribution, the following
expressions may be used.

µB = LB +
α

α + β
(UB − LB)

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 153

σ2
B =

αβ

(α + β)2(α + β + 1)
(UB − LB)2

Solving these for α and β gives:

α = (µB − LB)
(µB − LB)(UB − µB)− σ2

B

σ2
B(UB − LB)

β = (UB − µB)
(µB − LB)(UB − µB)− σ2

B

σ2
B(UB − LB)

Note that the uniform distribution is a special case of this distribution for parameters α = β = 1.

Description Keyword Associated Data Status Default
beta uncertain
variables

beta_-
uncertain

integer Optional group no beta uncertain
variables

beta uncertain
alphas

alphas list of reals Required N/A

beta uncertain
betas

betas list of reals Required N/A

Distribution lower
bounds

lower_bounds list of reals Required N/A

Distribution upper
bounds

upper_bounds list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’buv_i’ where i
= 1,2,3,...

Table 7.12: Specification detail for beta uncertain variables

7.5.8 Gamma Distribution

The gamma distribution is sometimes used to model time to complete a task, such as a repair or service task. It
is a very flexible distribution. Within the gamma uncertain optional group specification, the number of gamma
uncertain variables and the alpha and beta parameters are required specifications, and variable descriptors is an
optional specification.

The density function for the gamma distribution is given by:

f(x) =
xα−1e

−x
β

βαΓ(α)

where µGA = αβ and σ2
GA = αβ2. Note that the exponential distribution is a special case of this distribution for

parameter α = 1.

7.5.9 Gumbel Distribution

Within the gumbel optional uncertain group specification, the number of gumbel uncertain variables, and the
alpha and beta parameters are required specifications. The Gumbel distribution is also referred to as the Type I

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

154 Variables Commands

Description Keyword Associated Data Status Default
gamma uncertain
variables

gamma_-
uncertain

integer Optional group no gamma
uncertain variables

gamma uncertain
alphas

alphas list of reals Required N/A

gamma uncertain
betas

betas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’gauv_i’ where
i =
1,2,3,...

Table 7.13: Specification detail for gamma uncertain variables

Largest Extreme Value distribution. The distribution of maxima in sample sets from a population with a normal
distribution will asymptotically converge to this distribution. It is commonly used to model demand variables
such as wind loads and flood levels.

The density function for the Gumbel distribution is given by:

f(x) = αe−α(x−β)exp(−e−α(x−β))

where µGU = β + 0.5772
α and σGU = π√

6α
.

Description Keyword Associated Data Status Default
gumbel uncertain
variables

gumbel_-
uncertain

integer Optional group no gumbel
uncertain variables

gumbel uncertain
alphas

alphas list of reals Required N/A

gumbel uncertain
betas

betas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’guuv_i’ where
i =
1,2,3,...

Table 7.14: Specification detail for gumbel uncertain variables

7.5.10 Frechet Distribution

With the frechet uncertain optional group specification, the number of frechet uncertain variables and the alpha
and beta parameters are required specifications. The Frechet distribution is also referred to as the Type II Largest
Extreme Value distribution. The distribution of maxima in sample sets from a population with a lognormal
distribution will asymptotically converge to this distribution. It is commonly used to model non-negative demand
variables.

The density function for the frechet distribution is:

f(x) =
α

β
(
β

x
)α+1e−(β

x)α

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 155

where µF = βΓ(1− 1
α) and σ2

F = β2[Γ(1− 2
α)− Γ2(1− 1

α)]

Description Keyword Associated Data Status Default
frechet uncertain
variables

frechet_-
uncertain

integer Optional group no frechet
uncertain variables

frechet uncertain
alphas

alphas list of reals Required N/A

frechet uncertain
betas

betas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’fuv_i’ where i
= 1,2,3,...

Table 7.15: Specification detail for frechet uncertain variables

7.5.11 Weibull Distribution

The Weibull distribution is commonly used in reliability studies to predict the lifetime of a device. Within the
weibull uncertain optional group specification, the number of weibull uncertain variables and the alpha and beta
parameters are required specifications. The Weibull distribution is also referred to as the Type III Smallest Extreme
Value distribution. It is also used to model capacity variables such as material strength.

The density function for the weibull distribution is given by:

f(x) =
α

β

(
x

β

)α−1

e−(x
β)α

where µW = βΓ(1 + 1
α) and σW =

√
Γ(1+ 2

α)

Γ2(1+ 1
α)
− 1µW

Description Keyword Associated Data Status Default
weibull uncertain
variables

weibull_-
uncertain

integer Optional group no weibull
uncertain variables

weibull uncertain
alphas

alphas list of reals Required N/A

weibull uncertain
betas

betas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’wuv_i’ where i
= 1,2,3,...

Table 7.16: Specification detail for weibull uncertain variables

7.5.12 Histogram Bin Distribution

Histogram uncertain variables are typically used to model a set of empirical data. A bin histogram is a continuous
aleatory distribution that allows the user to specify bins of non-zero width (where the uncertain variable may lie)
along with the relative frequencies that are associated with each bin.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

156 Variables Commands

Within the histogram bin uncertain optional group specification, the number of histogram bin uncertain variables
is a required specification, the number of pairs is an optional key for apportionment of abscissas/ordinates/counts,
specification of abscissas and either ordinates or counts is required, and the variable descriptors is an optional
specification. When using a histogram bin variable, one must define at least one bin (with two bounding value
pairs).

The abscissas specification define abscissa values ("x" coordinates) for the PDF of each histogram variable.
When paired with counts, the specifications provide sets of (x,c) pairs for each histogram variable where c
defines a count (i.e., a frequency or relative probability) associated with a bin. If using bins of unequal width
and specification of probability densities is more natural, then the counts specification can be replaced with a
ordinates specification ("y" coordinates) in order to support interpretation of the input as (x,y) pairs defining
the profile of a "skyline" PDF. Conversion between the two specifications is straightforward: a count/frequency
is a cumulative probability quantity defined from the product of the ordinate density value and the x bin width.
Thus, in the cases of bins of equal width, ordinate and count specifications are equivalent. In addition, ordinates
and counts may be relative values; it is not necessary to scale them as all user inputs will be normalized.

To fully specify a bin-based histogram with n bins (potentially of unequal width), n+1 (x,c) or (x,y) pairs must
be specified with the following features:

• x is the parameter value for the left boundary of a histogram bin and c is the corresponding count for that
bin. Alternatively, y defines the ordinate density value for this bin within a skyline PDF. The right boundary
of the bin is defined by the left boundary of the next pair.

• the final pair specifies the right end of the last bin and must have a c or y value of zero.

• the x values must be strictly increasing.

• all c or y values must be positive, except for the last which must be zero.

• a minimum of two pairs must be specified for each bin-based histogram.

The number of pairs specifications provide for the proper association of multiple sets of (x,c) or (x,y) pairs with
individual histogram variables. For example, in the following specification

histogram_bin_uncertain = 2
num_pairs = 3 4
abscissas = 5 8 10 .1 .2 .3 .4
counts = 17 21 0 12 24 12 0

num_pairs associates the first 3 (x,c) pairs from abscissas and counts ((5,17),(8,21),(10,0)) with one bin-
based histogram variable, where one bin is defined between 5 and 8 with a count of 17 and another bin is defined
between 8 and 10 with a count of 21. The following set of 4 (x,c) pairs ((.1,12),(.2,24),(.3,12),(.4,0)) defines a
second bin-based histogram variable containing three equal-width bins with counts 12, 24, and 12 (middle bin is
twice as probable as the other two).

7.5.13 Poisson Distribution

The Poisson distribution is used to predict the number of discrete events that happen in a given time interval. The
expected number of occurences in the time interval is λ, which must be a positive real number. For example, if
events occur on average 4 times per year and we are interested in the distribution of events over six months, λ

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 157

Description Keyword Associated Data Status Default
histogram bin
uncertain variables

histogram_-
bin_-
uncertain

integer Optional group no histogram bin
uncertain variables

key to
apportionment
among bin-based
histogram
variables

num_pairs list of integers Optional equal distribution

sets of abscissas
for bin-based
histogram
variables

abscissas list of reals Required N/A

sets of ordinates
for bin-based
histogram
variables

ordinates list of reals Required (1 of 2
selections)

N/A

sets of counts for
bin-based
histogram
variables

counts list of reals Required (1 of 2
selections)

N/A

Descriptors descriptors list of strings Optional vector of
’hubv_i’ where
i =
1,2,3,...

Table 7.17: Specification detail for histogram bin uncertain variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

158 Variables Commands

would be 2 in this case. However, if we were interested in the distribution of events occuring over 5 years, λ
would be 20.

The density function for the poisson distribution is given by:

f(x) =
λe−λ

x!

where λ is the frequency of events happening, and x is the number of events that occur. The poisson distribution
returns samples representing number of occurrences in the time period of interest.

Description Keyword Associated Data Status Default
poisson uncertain
variables

poisson_-
uncertain

integer Optional group no poisson
uncertain variables

poisson uncertain
lambdas

lambdas list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’puv_i’ where i
= 1,2,3,...

Table 7.18: Specification detail for poisson uncertain variables

7.5.14 Binomial Distribution

The binomial distribution is typically used to predict the number of failures (or defective items or some type of
event) in a total of n independent tests or trials, where each trial has the probability p of failing or being defective.
Each particular test can be considered as a Bernoulli trial.

The density function for the binomial distribution is given by:

f(x) =
(

n
x

)
px(1− p)(n−x)

where p is the probability of failure per trial and n is the number of trials.

Description Keyword Associated Data Status Default
binomial uncertain
variables

binomial_-
uncertain

integer Optional group no binomial
uncertain variables

binomial uncertain
prob_per_trial

prob_per_-
trial

list of reals Required N/A

binomial uncertain
num_trials

num_trials list of integers Required N/A

Descriptors descriptors list of strings Optional vector of
’biuv_i’ where
i =
1,2,3,...

Table 7.19: Specification detail for binomial uncertain variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 159

7.5.15 Negative Binomial Distribution

The negative binomial distribution is typically used to predict the number of times to perform a test to have a total
of n successes, where each test has a probability p of success.

The density function for the negative binomial distribution is given by:

f(x) =
(

n + x− 1
x

)
pn(1− p)x

where p is the probability of success per trial and n is the number of successful trials.

Description Keyword Associated Data Status Default
negative binomial
uncertain variables

negative_-
binomial_-
uncertain

integer Optional group no negative
binomial uncertain
variables

negative binomial
uncertain success
prob_per_trial

prob_per_-
trial

list of reals Required N/A

negative binomial
uncertain success
num_trials

num_trials list of integers Required N/A

Descriptors descriptors list of strings Optional vector of
’nbuv_i’ where
i =
1,2,3,...

Table 7.20: Specification detail for negative binomial uncertain variables

7.5.16 Geometric Distribution

The geometric distribution represents the number of successful trials that might occur before a failure is observed.

The density function for the geometric distribution is given by:

f(x) = p(1− p)x

where p is the probability of failure per trial.

7.5.17 Hypergeometric Distribution

The hypergeometric distribution is used to define the number of failures (or the number of successes; the number
of some type of event) in a set of tests that has a known proportion of failures. The hypergeometric is often
described using an urn model. For example, say we have a total population containing N balls, and we know that
m of the balls are white and the remaining balls are green. If we draw n balls from the urn without replacement,
the hypergeometric distribution describes the distribution of the number of white balls drawn from the urn.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

160 Variables Commands

Description Keyword Associated Data Status Default
geometric
uncertain variables

geometric_-
uncertain

integer Optional group no geometric
uncertain variables

geometric
uncertain
prob_per_trial

prob_per_-
trial

list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’geuv_i’ where
i =
1,2,3,...

Table 7.21: Specification detail for geometric uncertain variables

The density function for the hypergeometric distribution is given by:

f(x) =

(
m
x

) (
N −m
n− x

)
(

N
n

)
where N is the total population, m is the number of items in the selected population (e.g. the number of white
balls in the full urn of N items), and n is the number of balls drawn.

Description Keyword Associated Data Status Default
hypergeometric
uncertain variables hypergeometric_-

uncertain

integer Optional group no hypergeometric
uncertain variables

hypergeometric
uncertain
total_population

total_-
population

list of integers Required N/A

hypergeometric
uncertain
selected_-
population

selected_-
population

list of integers Required N/A

hypergeometric
uncertain
num_drawn

num_drawn list of integers Required N/A

Descriptors descriptors list of strings Optional vector of
’hguv_i’ where
i =
1,2,3,...

Table 7.22: Specification detail for hypergeometric uncertain variables

7.5.18 Histogram Point Distribution

As mentioned above, histogram uncertain variables are typically used to model a set of empirical data. A point
histogram is a discrete aleatory distribution that allows the user to specify a set of real-valued points and associated
frequency values.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.5 Aleatory Uncertain Variables 161

Point histograms are similar to Discrete Design Real Set Variables and Discrete State Real Set Variables, but differ
in the inclusion of information on the relative probabilities of observing the different values within the set.

Within the histogram point uncertain optional group specification, the number of histogram point uncertain vari-
ables is a required specification, the number of pairs is an optional key for apportionment of abscissas and counts,
the sets of abscissas and counts are required, and the variable descriptors are optional. When using a histogram
point variable, one must define at least one set of abscissa/count pairs. As for Histogram Bin Distribution, the
abscissas specifications define abscissa values ("x" coordinates) for the PDF of each histogram variable.
When paired with counts, the specifications provide sets of (x,c) pairs for each histogram variable where c
defines a count (i.e., a frequency or relative probability) associated with a point.

To fully specify a point-based histogram with n points, n (x,c) pairs (note that (x,c) and (x,y) are equivalent in
this case) must be specified with the following features:

• x is the point value and c is the corresponding count for that value.

• the x values must be strictly increasing.

• all c values must be positive.

• a minimum of one pair must be specified for each point-based histogram.

The num_pairs specification provides for the proper association of multiple sets of (x,c) or (x,y) pairs with
individual histogram variables. For example, in the following specification,

histogram_point_uncertain = 2
num_pairs = 2 3
abscissas = 3 4 100 200 300
counts = 1 1 1 2 1

num_pairs associates the (x,c) pairs ((3,1),(4,1)) with one point-based histogram variable (where the values
3 and 4 are equally probable) and associates the (x,c) pairs ((100,1),(200,2),(300,1)) with a second point-based
histogram variable (where the value 200 is twice as probable as either 100 or 300).

7.5.19 Correlations

Aleatory uncertain variables may have correlations specified through use of an uncertain_correlation_-
matrix specification. This specification is generalized in the sense that its specific meaning depends on the non-
deterministic method in use. When the method is a nondeterministic sampling method (i.e., nond_sampling),
then the correlation matrix specifies rank correlations [Iman and Conover, 1982]. When the method is instead
a reliability (i.e., nond_local_reliability or nond_global_reliability) or stochastic expansion
(i.e., nond_polynomial_chaos or nond_stoch_collocation) method, then the correlation matrix
specifies correlation coefficients (normalized covariance) [Haldar and Mahadevan, 2000]. In either of these cases,
specifying the identity matrix results in uncorrelated uncertain variables (the default). The matrix input should be
symmetric and have all n2 entries where n is the total number of aleatory uncertain variables (all normal, lognor-
mal, uniform, loguniform, triangular, exponential, beta, gamma, gumbel, frechet, weibull, histogram bin, poisson,
binomial, negative binomial, geometric, hypergeometric, and histogram point specifications, in that order). Table
7.24 summarizes the specification details:

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

162 Variables Commands

Description Keyword Associated Data Status Default
histogram point
uncertain variables

histogram_-
point_-
uncertain

integer Optional group no histogram point
uncertain variables

key to
apportionment
among point-based
histogram
variables

num_pairs list of integers Optional equal distribution

sets of abscissas
for point-based
histogram
variables

abscissas list of reals Required N/A

sets of counts for
point-based
histogram
variables

counts list of reals Required N/A

Descriptors descriptors list of strings Optional vector of
’hupv_i’ where
i =
1,2,3,...

Table 7.23: Specification detail for histogram point uncertain variables

Description Keyword Associated Data Status Default
correlations in
aleatory uncertain
variables

uncertain_-
correlation_-
matrix

list of reals Optional identity matrix
(uncorrelated)

Table 7.24: Specification detail for aleatory uncertain correlations

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.6 Epistemic Uncertain Variables 163

7.6 Epistemic Uncertain Variables

In addition to continuous and discrete aleatory probability distributions, DAKOTA provides support for epistemic
uncertainties through its interval variable specification. This is not a probability distribution; rather, it specifies a
set of belief structures based on intervals that may be contiguous, overlapping, or disjoint. It is used in specifying
the inputs necessary for an epistemic uncertainty analysis using Dempster-Shafer theory of evidence.

7.6.1 Interval Uncertain Variable

The interval uncertain variable is NOT a probability distribution. Although it may seem similar to a histogram,
the interpretation of this uncertain variable is different. It is used in epistemic uncertainty analysis, where one is
trying to model uncertainty due to lack of knowledge. In DAKOTA, epistemic uncertainty analysis is performed
using Dempster-Shafer theory of evidence. In this approach, one does not assign a probability distribution to
each uncertain input variable. Rather, one divides each uncertain input variable into one or more intervals. The
input parameters are only known to occur within intervals: nothing more is assumed. Each interval is defined
by its upper and lower bounds, and a Basic Probability Assignment (BPA) associated with that interval. The
BPA represents a probability of that uncertain variable being located within that interval. The intervals and BPAs
are used to construct uncertainty measures on the outputs called "belief" and "plausibility." Belief represents the
smallest possible probability that is consistent with the evidence, while plausibility represents the largest possible
probability that is consistent with the evidence. For more information about the Dempster-Shafer approach, see
the nondeterministic evidence method, nond_evidence, in the Methods section of this Reference manual. As
an example, in the following specification:

interval_uncertain = 2
num_intervals = 3 2
interval_probs = 0.2 0.5 0.3 0.4 0.6
interval_bounds = 2.0 2.5 4.0 5.0 4.5 6.0 1.0 5.0 3.0 5.0

there are 2 interval uncertain variables. The first one is defined by three intervals, and the second by two intervals.
The three intervals for the first variable have basic probability assignments of 0.2, 0.5, and 0.3, respectively,
while the basic probability assignments for the two intervals for the second variable are 0.4 and 0.6. The basic
probability assignments for each interval variable must sum to one. The interval bounds for the first variable are
[2, 2.5], [4, 5], and [4.5, 6], and the interval bounds for the second variable are [1.0, 5.0] and [3.0, 5.0].

Note that the intervals can be overlapping or disjoint. Table 7.25 summarizes the specification details for the
interval_uncertain variable.

7.7 State Variables

State variables provide a convenient mechanism for managing additional model parameterizations such as mesh
density, simulation convergence tolerances, and time step controls. Types include continuous real, discrete range
of integer values (contiguous integers), discrete set of integer values, and discrete set of real values. Within each
optional state variables specification group, the number of variables is always required. The following Tables 7.26
through 7.29 summarize the required and optional specifications for each state variable subtype. The initial_-
state specifications provide the initial values for the state variables which will be passed through to the simulator
(e.g., in order to define parameterized modeling controls). The remaining specifications are analagous to those for
Design Variables.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

164 Variables Commands

Description Keyword Associated Data Status Default
interval uncertain
variables

interval_-
uncertain

integer Optional group no interval
uncertain variables

number of intervals
defined for each
interval variable

num_-
intervals

list of integers Required group None

basic probability
assignments per
interval

interval_-
probs

list of reals Required group.
Note that the
probabilities per
variable must sum
to one.

None

bounds per interval interval_-
bounds

list of reals Required group.
Specify bounds as
(lower, upper) per
interval, per
variable

None

Descriptors descriptors list of strings Optional vector of
’iuv_i’ where i
= 1,2,3,...

Table 7.25: Specification detail for interval uncertain variables

7.7.1 Continuous State Variables

Description Keyword Associated Data Status Default
Continuous state
variables

continuous_-
state

integer Optional group No continuous
state variables

Initial states initial_-
state

list of reals Optional vector values = 0.
(repaired to
bounds, if
required)

Lower bounds lower_bounds list of reals Optional vector values =
-DBL_MAX

Upper bounds upper_bounds list of reals Optional vector values =
+DBL_MAX

Descriptors descriptors list of strings Optional vector of
’csv_i’ where i
= 1,2,3,...

Table 7.26: Specification detail for continuous state variables

7.7.2 Discrete State Range Variables

7.7.3 Discrete State Integer Set Variables

7.7.4 Discrete State Real Set Variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

7.7 State Variables 165

Description Keyword Associated Data Status Default
Discrete state
range variables

discrete_-
state_range

integer Optional group No discrete state
variables

Initial states initial_-
state

list of integers Optional vector values = 0
(repaired to
bounds, if
required)

Lower bounds lower_bounds list of integers Optional vector values =
INT_MIN

Upper bounds upper_bounds list of integers Optional vector values =
INT_MAX

Descriptors descriptors list of strings Optional vector of
’dsriv_i’
where i =
1,2,3,...

Table 7.27: Specification detail for discrete state range variables

Description Keyword Associated Data Status Default
Discrete state set
of integer variables

discrete_-
state_set_-
integer

integer Optional group no discrete state set
of integer variables

Initial state initial_-
state

list of integers Optional middle set values
(mean indices,
rounded down)

Number of values
for each variable

num_set_-
values

list of integers Optional equal distribution

Set values set_values list of integers Required N/A
Descriptors descriptors list of strings Optional vector of

’dssiv_i’
where i =
1,2,3,...

Table 7.28: Specification detail for discrete state set of integer variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

166 Variables Commands

Description Keyword Associated Data Status Default
Discrete state set
of real variables

discrete_-
state_set_-
real

integer Optional group no discrete state set
of real variables

Initial state initial_-
state

list of reals Optional middle set values
(mean indices,
rounded down)

Number of values
for each variable

num_set_-
values

list of integers Optional equal distribution

Set values set_values list of reals Required N/A
Descriptors descriptors list of strings Optional vector of

’dssrv_i’
where i =
1,2,3,...

Table 7.29: Specification detail for discrete state set of real variables

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 8

Interface Commands

8.1 Interface Description

The interface section in a DAKOTA input file specifies how function evaluations will be performed in order to map
a set of parameters into a set of responses. Function evaluations are performed using either algebraic mappings,
interfaces to simulation codes, or a combination of the two.

When employing algebraic mappings, the AMPL solver library [Gay, 1997] is used to evaluate a directed acyclic
graph (DAG) specification from a separate stub.nl file. Separate stub.col and stub.row files are also
required to declare the string identifiers of the subset of inputs and outputs, respectively, that will be used in the
algebraic mappings.

When employing mappings with simulation codes, the simulations may be available internally or externally to
DAKOTA. The interface invokes the simulation using either system calls, forks, direct function invocations, or
computational grid invocations. In the system call and fork cases, the simulation is external to DAKOTA and
communication between DAKOTA and the simulation occurs through parameter and response files. In the direct
function case, the simulation is internal to DAKOTA and communication occurs through the function parameter
list. The direct case can involve linked simulation codes or test functions which are compiled into the DAKOTA
executable. The test functions allow for rapid testing of algorithms without process creation overhead or engi-
neering simulation expense. The grid case is experimental and under development, but is intended to support
simulations which are external to DAKOTA and geographically distributed.

Several examples follow. The first example shows an system call interface specification which specifies the
names of the analysis executable and the parameters and results files, and that parameters and responses files will
be tagged and saved. Refer to System call interface for more information on the use of these options.

interface,
system

analysis_drivers = ’rosenbrock’
parameters_file = ’params.in’
results_file = ’results.out’
file_tag
file_save

The next example shows a similar specification, except that an external rosenbrock executable has been re-
placed by use of the internal rosenbrock test function from the DirectApplicInterface class. Refer to Direct
function interface for more information on this specification.

168 Interface Commands

interface,
direct

analysis_drivers = ’rosenbrock’

The final example demonstrates an interface employing both algebraic and simulation-based mappings. The
results from the individual mappings are overlaid based on the variable and response descriptors used by the
individual mappings.

interface,
algebraic_mappings = ’ampl/fma.nl’
system

analysis_driver = ’text_book’
parameters_file = ’tb.in’
results_file = ’tb.out’
file_tag

asynchronous

8.2 Interface Specification

The interface specification has the following top-level structure:

interface,
<interface independent controls>
<algebraic mappings specification>
<simulation interface selection>

<simulation interface dependent controls>

The <interface independent controls> are those controls which are valid for all interfaces. Re-
ferring to dakota.input.summary, these controls are defined externally from the algebraic mappings and
simulation interface selection blocks (before and after). Both the algebraic mappings specification and the simula-
tion interface selection are optional specifications, allowing the use of algebraic mappings alone, simulation-based
mappings alone, or a combination. The simulation interface selection blocks are all required group specifications
separated by logical OR’s, where the interface selection must be system, fork, direct, or grid. The
<interface dependent controls> are those controls which are only meaningful for a specific simu-
lation interface selection. These controls are defined within each interface selection block. Defaults for interface
independent and simulation interface dependent controls are defined in DataInterface. The following sections
provide additional detail on the interface independent controls followed by the algebraic mappings specification,
the simulation interface selections, and their corresponding simulation interface dependent controls.

8.3 Interface Independent Controls

The optional set identifier specification uses the keyword id_interface to input a string for use in identifying
a particular interface specification. A model can then identify the use of this interface by specifying the same string
in its interface_pointer specification (see Model Commands). For example, a model whose specification
contains interface_pointer = ’I1’will use an interface specification with id_interface = ’I1’.
If the id_interface specification is omitted, a particular interface specification will be used by a model only
if that model omits specifying a interface_pointer and if the interface set was the last set parsed (or is the
only set parsed). In common practice, if only one interface set exists, then id_interface can be safely omitted

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

8.3 Interface Independent Controls 169

from the interface specification and interface_pointer can be omitted from the model specification(s),
since there is no potential for ambiguity in this case.

Table 8.1 summarizes the set identifier interface independent control.

Description Keyword Associated Data Status Default
Interface set
identifier

id_interface string Optional use of last interface
parsed

Table 8.1: Specification detail for interface independent controls: set identifier

Table 8.2 summarizes the interface independent controls associated with parallel computing.

Description Keyword Associated Data Status Default
Asynchronous
interface usage

asynchronous none Optional group synchronous
interface usage

Asynchronous
evaluation
concurrency

evaluation_-
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Self-schedule local
evals

local_-
evaluation_-
self_-
scheduling

none Optional (1 of 2) self-scheduled
local evals

Static-schedule
local evals

local_-
evaluation_-
static_-
scheduling

none Optional (1 of 2) self-scheduled
local evals

Asynchronous
analysis
concurrency

analysis_-
concurrency

integer Optional local: unlimited
concurrency,
hybrid: no
concurrency

Number of
evaluation servers

evaluation_-
servers

integer Optional no override of auto
configure

Self scheduling of
evaluations

evaluation_-
self_-
scheduling

none Optional no override of auto
configure

Static scheduling
of evaluations

evaluation_-
static_-
scheduling

none Optional no override of auto
configure

Number of
analysis servers

analysis_-
servers

integer Optional no override of auto
configure

Self scheduling of
analyses

analysis_-
self_-
scheduling

none Optional no override of auto
configure

Static scheduling
of analyses

analysis_-
static_-
scheduling

none Optional no override of auto
configure

Table 8.2: Specification detail for interface independent controls: parallelism

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

170 Interface Commands

The optional asynchronous flag specifies use of asynchronous protocols (i.e., background system calls, non-
blocking forks, POSIX threads) when evaluations or analyses are invoked. The evaluation_concurrency
and analysis_concurrency specifications serve a dual purpose:

• when running DAKOTA on a single processor in asynchronous mode, the default concurrency of
evaluations and analyses is all concurrency that is available. The evaluation_concurrency and
analysis_concurrency specifications can be used to limit this concurrency in order to avoid ma-
chine overload or usage policy violation.

• when running DAKOTA on multiple processors in message passing mode, the default concurrency of eval-
uations and analyses on each of the servers is one (i.e., the parallelism is exclusively that of the message
passing). With the evaluation_concurrency and analysis_concurrency specifications, a
hybrid parallelism can be selected through combination of message passing parallelism with asynchronous
parallelism on each server.

The optional evaluation_servers and analysis_servers specifications support user overrides
of the automatic parallel configuration for the number of evaluation servers and the number of anal-
ysis servers. Similarly, the optional evaluation_self_scheduling, evaluation_static_-
scheduling, analysis_self_scheduling, and analysis_static_scheduling specifications
can be used to override the automatic parallel configuration of scheduling approach at the evaluation and analysis
parallelism levels. That is, if the automatic configuration is undesirable for some reason, the user can enforce a
desired number of partitions and a desired scheduling policy at these parallelism levels. Refer to ParallelLibrary
and the Parallel Computing chapter of the Users Manual [Adams et al., 2010] for additional information.

When performing asynchronous local evaluations, the local evaluation scheduling keywords control how new
evaluation jobs are dispatched when one completes. If local_evaluation_self_scheduling (default)
is specified, each completed evaluation will be replaced by the next in the local evaluation queue. If local_-
evaluation_static_scheduling is specified, each completed evaluation will be replaced by an evalu-
ation number congruent modulo the evaluation_concurrency. This is helpful for relative node schedul-
ing as described in Dakota/examples/parallelism. For example, assuming only local concurrency (no
MPI), if the local concurrency is 7 and job 2 completes, it will be replaced with job 9. This can result in idle
processors if runtimes are non-uniform.

8.4 Algebraic mappings

If desired, one can define algebraic input-output mappings using the AMPL code [Fourer et al., 2003] and save
these mappings in 3 files: stub.nl, stub.col, and stub.row, where stub is a particular root name de-
scribing a particular problem. These files names can be communicated to DAKOTA using the algebraic_-
mappings input. This string may either specify the stub.nl filename, or alternatively, just the stub itself.

DAKOTA then uses stub.col and stub.row to extract the input and output identifier strings and employs
the AMPL solver library [Gay, 1997] to process the DAG specification in stub.nl. The variable and objective
function names declared within AMPL should be a subset of the variable descriptors and response descriptors
used by DAKOTA (see Variables Commands and Response Labels). Ordering is not important, as DAKOTA will
reorder data as needed.

Table 8.3 summarizes the algebraic mappings specification.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

8.5 Simulation interfaces 171

Description Keyword Associated Data Status Default
Algebraic
mappings file

algebraic_-
mappings

string Optional no algebraic
mappings

Table 8.3: Specification detail for algebraic mappings

8.5 Simulation interfaces

Each simulation interface uses one or more simulator programs, and optionally filter programs, to perform the
parameter to response mapping. The simulator and filter programs are invoked with system calls, forks, direct
function calls, or computational grid invocations. In the system call and fork cases, a separate process is created
for the simulator program and files are used for transfer of parameter and response data between DAKOTA and
the simulator program. This approach is simple and reliable and does not require any modification to simulator
programs. In the direct function case, subroutine parameter lists are used to pass the parameter and response data.
This approach requires modification to simulator programs so that they can be linked into DAKOTA; however it
can be more efficient through the elimination of process creation overhead and deactivation of unnecessary simu-
lator functions (e.g., output), can be less prone to loss of precision in that data can be passed directly rather than
written to and read from a file, and can enable completely internal management of multiple levels of parallelism
through the use of MPI communicator partitioning. In the grid case, computational grid services are utilized in
order to enable distribution of simulations across different computer resources. This capability targets Condor
and/or Globus services but is currently experimental and incomplete.

Table 8.4 summarizes the interface independent controls associated with the simulator programs.

Description Keyword Associated Data Status Default
Analysis drivers analysis_-

drivers
list of strings Required N/A

Additional
identifiers for use
by the
analysis_-
drivers

analysis_-
components

list of strings Optional no additional
identifiers

Input filter input_filter string Optional no input filter
Output filter output_-

filter
string Optional no output filter

Failure capturing failure_-
capture

abort | retry
(with integer data)
| recover (with
list of reals data) |
continuation

Optional group abort

Feature
deactivation

deactivate active_set_-
vector,
evaluation_-
cache, and/or
restart_file

Optional group Active set vector
control, function
evaluation cache,
and restart file
features are active

Table 8.4: Specification detail for simulation interface controls: drivers, filters, failure capturing, and feature
management

The required analysis_drivers specification provides the names of executable analysis programs or scripts

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

172 Interface Commands

which comprise a function evaluation. The specification can also give values to environment variables that the
programs will see; for details, see the subsection on Syntax for Filter and Driver Strings in the Interfaces chapter
of the Users Manual [Adams et al., 2010]. The common case of a single analysis driver is simply accommodated
by specifying a list of one driver (this also provides backward compatibility with previous DAKOTA versions).
The optional analysis_components specification allows the user to provide additional identifiers (e.g., mesh
file names) for use by the analysis drivers. This is particularly useful when the same analysis driver is to be reused
multiple times for slightly different analyses. The specific content within the strings is open-ended and can involve
whatever syntax is convenient for a particular analysis driver. The number of analysis components nc should be an
integer multiple of the number of drivers nd, and the first nc/nd component strings will be passed to the first driver,
etc. The optional input_filter and output_filter specifications provide the names of separate pre- and
post-processing programs or scripts which assist in mapping DAKOTA parameters files into analysis input files
and mapping analysis output files into DAKOTA results files, respectively. If there is only a single analysis driver,
then it is usually most convenient to combine pre- and post-processing requirements into a single analysis driver
script and omit the separate input and output filters. However, in the case of multiple analysis drivers, the input
and output filters provide a convenient location for non-repeated pre- and post-processing requirements. That
is, input and output filters are only executed once per function evaluation, regardless of the number of analysis
drivers, which makes them convenient locations for data processing operations that are shared among the analysis
drivers.

Failure capturing in interfaces is governed by the optional failure_capture specification. Supported direc-
tives for mitigating captured failures are abort (the default), retry, recover, and continuation. The
retry selection supports an integer input for specifying a limit on retries, and the recover selection supports
a list of reals for specifying the dummy function values (only zeroth order information is supported) to use for the
failed function evaluation. Refer to the Simulation Code Failure Capturing chapter of the Users Manual [Adams
et al., 2010] for additional information.

The optional deactivate specification block includes three features which a user may deactivate in order to
simplify interface development, increase execution speed, and/or reduce memory and disk requirements:

• Active set vector (ASV) control: deactivation of this feature using a deactivate active_set_-
vector specification allows the user to turn off any variability in ASV values so that active set logic
can be omitted in the user’s simulation interface. This option trades some efficiency for simplicity in
interface development. The default behavior is to request the minimum amount of data required by an
algorithm at any given time, which implies that the ASV values may vary from one function evaluation to
the next. Since the user’s interface must return the data set requested by the ASV values, this interface must
contain additional logic to account for any variations in ASV content. Deactivating this ASV control causes
DAKOTA to always request a "full" data set (the full function, gradient, and Hessian data that is available
from the interface as specified in the responses specification) on each function evaluation. For example,
if ASV control has been deactivated and the responses section specifies four response functions, analytic
gradients, and no Hessians, then the ASV on every function evaluation will be { 3 3 3 3 }, regardless of what
subset of this data is currently needed. While wasteful of computations in many instances, this simplifies
the interface and allows the user to return the same data set on every evaluation. Conversely, if ASV control
is active (the default behavior), then the ASV requests in this example might vary from { 1 1 1 1 } to { 2 0
0 2 }, etc., according to the specific data needed on a particular function evaluation. This will require the
user’s interface to read the ASV requests and perform the appropriate logic in conditionally returning only
the data requested. In general, the default ASV behavior is recommended for the sake of computational
efficiency, unless interface development time is a critical concern. Note that in both cases, the data returned
to DAKOTA from the user’s interface must match the ASV passed in, or else a response recovery error will
result. However, when the ASV control is deactivated, the ASV values are invariant and need not be checked
on every evaluation. Note: Deactivating the ASV control can have a positive effect on load balancing for
parallel DAKOTA executions. Thus, there is significant overlap in this ASV control option with speculative

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

8.5 Simulation interfaces 173

gradients (see Method Independent Controls). There is also overlap with the mode override approach used
with certain optimizers (see SNLLOptimizer and SNLLLeastSq) to combine individual value, gradient,
and Hessian requests.

• Function evaluation cache: deactivation of this feature using a deactivate evaluation_cache spec-
ification allows the user to avoid retention of the complete function evaluation history in memory. This can
be important for reducing memory requirements in large-scale applications (i.e., applications with a large
number of variables or response functions) and for eliminating the overhead of searching for duplicates
within the function evaluation cache prior to each new function evaluation (e.g., for improving speed in
problems with 1000’s of inexpensive function evaluations or for eliminating overhead when performing
timing studies). However, the downside is that unnecessary computations may be performed since duplica-
tion in function evaluation requests may not be detected. For this reason, this option is not recommended
when function evaluations are costly. Note: duplication detection within DAKOTA can be deactivated, but
duplication detection features within specific optimizers may still be active.

• Restart file: deactivation of this feature using a deactivate restart_file specification allows the
user to eliminate the output of each new function evaluation to the binary restart file. This can increase speed
and reduce disk storage requirements, but at the expense of a loss in the ability to recover and continue
a run that terminates prematurely (e.g., due to a system crash or network problem). This option is not
recommended when function evaluations are costly or prone to failure.

In addition to these simulation interface specifications, the type of interface involves a selection between system,
fork, direct, or grid required group specifications. The following sections describe these group specifica-
tions in detail.

8.5.1 System call interface

For system call interfaces, the system keyword anchors the group specification and the parameters_file,
results_file, verbatim, aprepro, file_tag, and file_save are additional settings within the
group specification. The parameters and results file names are supplied as strings using the parameters_-
file and results_file specifications. Both specifications are optional with the default data transfer files
being Unix temporary files with system-generated names (e.g., /usr/tmp/aaaa08861). The parameters and
results file names are passed on the command line to the analysis driver(s) and any specified input/output filters,
unless the verbatim option is invoked, in which case the driver/filter invocation syntax is used verbatim without
command line argument augmentation. For additional information on invocation syntax, see the Interfaces chapter
of the Users Manual [Adams et al., 2010]. The format of data in the parameters files can be modified for direct
usage with the APREPRO pre-processing tool [Sjaardema, 1992] using the aprepro specification (NOTE: the
DPrePro pre-processing utility does not require this special formatting). File tagging (appending parameters and
results files with the function evaluation number) and file saving (leaving parameters and results files in existence
after their use is complete) are controlled with the file_tag and file_save flags. If these specifications are
omitted, the default is no file tagging (no appended function evaluation number) and no file saving (files will be
removed after a function evaluation). File tagging is most useful when multiple function evaluations are running
simultaneously using files in a shared disk space, and file saving is most useful when debugging the data com-
munication between DAKOTA and the simulation. The additional specifications for system call interfaces are
summarized in Table 8.5.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

174 Interface Commands

Description Keyword Associated Data Status Default
System call
interface

system none Required group (1
of 4 selections)

N/A

Parameters file
name

parameters_-
file

string Optional Unix temp files

Results file name results_file string Optional Unix temp files
Verbatim
driver/filter
invocation syntax

verbatim none Optional driver/filter
invocation syntax
augmented with
file names

Aprepro
parameters file
format

aprepro none Optional standard
parameters file
format

Parameters and
results file tagging

file_tag none Optional no tagging

Parameters and
results file saving

file_save none Optional file cleanup

Create work
directory

work_-
directory

none Optional no work directory

Name of work
directory

named string Optional workdir

Tag work directory directory_-
tag

none Optional no work directory
tagging

Save work
directory

directory_-
save

none Optional remove work
directory

Template directory template_-
directory

string path Optional no template
directory

Template files template_-
files

list of strings Optional no template files

Copy template files copy none Optional link template files
Replace existing
files

replace none Optional do not overwrite
files

Table 8.5: Additional specifications for system call interfaces

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

8.5 Simulation interfaces 175

8.5.2 Fork interface

For fork interfaces, the fork keyword anchors a group specification. The parameters_file, results_-
file, verbatim, aprepro, file_tag, and file_save are additional settings within this group speci-
fication and have identical meanings to those for the system call interface as summarized previously in Table
8.5.

8.5.3 Direct function interface

For direct function interfaces, processors_per_analysis is an additional optional setting within
the required group which can be used to specify multiprocessor analysis partitions. As with the
evaluation_servers, analysis_servers, evaluation_self_scheduling, evaluation_-
static_scheduling, analysis_self_scheduling, and analysis_static_scheduling spec-
ifications described above in Interface Independent Controls, processors_per_analysis provides a means
for the user to override the automatic parallel configuration (refer to ParallelLibrary and the Parallel Computing
chapter of the Users Manual [Adams et al., 2010]) for the number of processors used for each analysis partition.
Note that if both analysis_servers and processors_per_analysis are specified and they are not in
agreement, then analysis_servers takes precedence. The direct interface specifications are summarized in
Table 8.6.

Description Keyword Associated Data Status Default
Direct function
interface

direct none Required group (1
of 4 selections)

N/A

Number of
processors per
analysis

processors_-
per_analysis

integer Optional no override of auto
configure

Table 8.6: Additional specifications for direct function interfaces

DAKOTA supports direct interfaces to a few select simulation codes. One example is ModelCenter, a com-
mercial simulation management framework from Phoenix Integration. To utilize this interface, a user must
first define the simulation specifics within a ModelCenter session and then save these definitions to a Model-
Center configuration file. The analysis_components specification provides the means to communicate
this configuration file to DAKOTA’s ModelCenter interface. A similar direct interface to The Mathworks’
(http://www.mathworks.com/) Matlab (specified by analysis_driver = ’matlab’) enables a
user to employ the analysis_components specification to point to a Matlab m-file containing a function that
performs the simulation. This capability is disabled by default in DAKOTA binaries, but information on enabling
and using it is available in the Users Manual [Adams et al., 2010]. Contact the DAKOTA developers for assistance
building and using DAKOTA with Matlab simulation support.

Other direct interfaces to simulation codes include Sandia’s SALINAS structural dynamics code, Sandia’s
SIERRA multiphysics framework, and Sandia’s SAGE computational fluid dynamics code, which are available
within Sandia and supported to varying degrees. In addition to interfaces with simulation codes, a common us-
age of the direct interface is for invoking internal test functions which are available for performing parameter
to response mappings as inexpensively as possible. These problems are compiled directly into the DAKOTA
executable as part of the direct function interface class and are used for algorithm testing. Refer to DirectApplic-
Interface for currently available testers.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://www.mathworks.com/

176 Interface Commands

8.5.4 Grid interface

For grid interfaces, no additional specifications are used at this time.

This capability has been used for interfaces with IDEA and JAVASpaces in the past and is currently a placeholder
for future work with Condor and/or Globus services. It is not currently operational. The grid interface specification
is summarized in Table 8.7.

Description Keyword Associated Data Status Default
Grid interface grid none Required group (1

of 4 selections)
N/A

Table 8.7: Additional specifications for grid interfaces

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 9

Responses Commands

9.1 Responses Description

The responses specification in a DAKOTA input file specifies the data set that can be recovered from the interface
after the completion of a "function evaluation." Here, the term function evaluation is used somewhat loosely to
denote a data request from an iterator that is mapped through an interface in a single pass. Strictly speaking,
this data request may actually involve multiple response functions and their derivatives, but the term function
evaluation is widely used for this purpose. The data set is made up of a set of functions, their first derivative
vectors (gradients), and their second derivative matrices (Hessians). This abstraction provides a generic data
container (the Response class) whose contents are interpreted differently depending upon the type of iteration
being performed. In the case of optimization, the set of functions consists of one or more objective functions,
nonlinear inequality constraints, and nonlinear equality constraints. Linear constraints are not part of a response
set since their coefficients can be communicated to an optimizer at start up and then computed internally for
all function evaluations (see Method Independent Controls). In the case of least squares iterators, the functions
consist of individual residual terms or model responses and an observed data file for comparison (as opposed
to a sum of the squares objective function) as well as nonlinear inequality and equality constraints. In the case
of nondeterministic iterators, the function set is made up of generic response functions for which the effect of
parameter uncertainty is to be quantified. Lastly, parameter study and design of experiments iterators may be used
with any of the response data set types. Within the C++ implementation, the same data structures are reused for
each of these cases; only the interpretation of the data varies from iterator branch to iterator branch.

Gradient availability may be described by no_gradients, numerical_gradients, analytic_-
gradients, or mixed_gradients. The no_gradients selection means that gradient information is not
needed in the study. The numerical_gradients selection means that gradient information is needed and will
be computed with finite differences using either the native or one of the vendor finite differencing routines. The
analytic_gradients selection means that gradient information is available directly from the simulation (fi-
nite differencing is not required). And the mixed_gradients selection means that some gradient information
is available directly from the simulation whereas the rest will have to be estimated with finite differences.

Hessian availability may be described by no_hessians, numerical_hessians, quasi_hessians,
analytic_hessians, or mixed_hessians. As for the gradient specification, the no_hessians selec-
tion indicates that Hessian information is not needed/available in the study, and the analytic_hessians
selection indicates that Hessian information is available directly from the simulation. The numerical_-
hessians selection indicates that Hessian information is needed and will be estimated with finite differences

178 Responses Commands

using either first-order differences of gradients (for analytic gradients) or second-order differences of function val-
ues (for non-analytic gradients). The quasi_hessians specification means that Hessian information is needed
and will be accumulated over time using secant updates based on the existing gradient evaluations. Finally, the
mixed_hessians selection allows for a mixture of analytic, numerical, and quasi Hessian response data.

The responses specification provides a description of the total data set that is available for use by the iterator during
the course of its iteration. This should be distinguished from the data subset described in an active set vector (see
DAKOTA File Data Formats in the Users Manual [Adams et al., 2010]) which describes the particular subset of
the response data needed for an individual function evaluation. In other words, the responses specification is a
broad description of the data to be used during a study whereas the active set vector describes the particular subset
of the available data that is currently needed.

Several examples follow. The first example shows an optimization data set containing an objective function and
two nonlinear inequality constraints. These three functions have analytic gradient availability and no Hessian
availability.

responses,
num_objective_functions = 1
num_nonlinear_inequality_constraints = 2
analytic_gradients
no_hessians

The next example shows a typical specification for a least squares data set. The six residual functions will
have numerical gradients computed using the dakota finite differencing routine with central differences of 0.1%
(plus/minus delta value = .001∗value).

responses,
num_least_squares_terms = 6
numerical_gradients

method_source dakota
interval_type central
fd_gradient_step_size = .001

no_hessians

The last example shows a specification that could be used with a nondeterministic sampling iterator. The three
response functions have no gradient or Hessian availability; therefore, only function values will be used by the
iterator.

responses,
num_response_functions = 3
no_gradients
no_hessians

Parameter study and design of experiments iterators are not restricted in terms of the response data sets which
may be catalogued; they may be used with any of the function specification examples shown above.

9.2 Responses Specification

The responses specification has the following structure:

responses,

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.3 Responses Set Identifier 179

<set identifier>
<response descriptors>
<function specification>
<gradient specification>
<Hessian specification>

Referring to dakota.input.summary, it is evident from the enclosing brackets that the set identifier and
response descriptors are optional. However, the function, gradient, and Hessian specifications are all required
specifications, each of which contains several possible specifications separated by logical OR’s. The function
specification must be one of three types:

• objective and constraint functions

• least squares terms and constraint functions

• generic response functions

The gradient specification must be one of four types:

• no gradients

• numerical gradients

• analytic gradients

• mixed gradients

And the Hessian specification must be one of five types:

• no Hessians

• numerical Hessians

• quasi Hessians

• analytic Hessians

• mixed Hessians

The following sections describe each of these specification components in additional detail.

9.3 Responses Set Identifier

The optional set identifier specification uses the keyword id_responses to input a string for use in identifying
a particular responses specification. A model can then identify the use of this response set by specifying the same
string in its responses_pointer specification (see Model Independent Controls). For example, a model
whose specification contains responses_pointer = ’R1’ will use a responses set with id_responses
= ’R1’.

If the id_responses specification is omitted, a particular responses specification will be used by a model
only if that model omits specifying a responses_pointer and if the responses set was the last set parsed
(or is the only set parsed). In common practice, if only one responses set exists, then id_responses can
be safely omitted from the responses specification and responses_pointer can be omitted from the model
specification(s), since there is no potential for ambiguity in this case. Table 9.1 summarizes the set identifier input.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

file:dakota.input.summary

180 Responses Commands

Description Keyword Associated Data Status Default
Responses set
identifier

id_responses string Optional use of last
responses parsed

Table 9.1: Specification detail for set identifier

9.4 Response Labels

The optional response labels specification uses the keyword response_descriptors to input a list of strings
which will be replicated through the DAKOTA output to help identify the numerical values for particular response
functions. The default descriptor strings use a root string plus a numeric identifier. This root string is "obj_fn"
for objective functions, "least_sq_term" for least squares terms, "response_fn" for generic response
functions, "nln_ineq_con" for nonlinear inequality constraints, and "nln_eq_con" for nonlinear equality
constraints. Table 9.2 summarizes the response descriptors input.

Description Keyword Associated Data Status Default
Response labels descriptors list of strings Optional root strings plus

numeric identifiers

Table 9.2: Specification detail for response labels

9.5 Function Specification

The function specification must be one of three types: 1) a group containing objective and constraint functions, 2)
a group containing least squares terms and constraint functions, or 3) a generic response functions specification.
These function sets correspond to optimization, least squares, and uncertainty quantification iterators, respectively.
Parameter study and design of experiments iterators may be used with any of the three function specifications.

9.5.1 Objective and constraint functions (optimization data set)

An optimization data set is specified using num_objective_functions and optionally objective_-
function_scale_types, objective_function_scales, multi_objective_weights,
num_nonlinear_inequality_constraints, nonlinear_inequality_lower_bounds,
nonlinear_inequality_upper_bounds, nonlinear_inequality_scale_types,
nonlinear_inequality_scales, num_nonlinear_equality_constraints, nonlinear_-
equality_targets, nonlinear_equality_scale_types, and nonlinear_equality_-
scales. The num_objective_functions, num_nonlinear_inequality_constraints, and
num_nonlinear_equality_constraints inputs specify the number of objective functions, nonlinear
inequality constraints, and nonlinear equality constraints, respectively. The number of objective functions must
be 1 or greater, and the number of inequality and equality constraints must be 0 or greater. The objective_-
function_scale_types specification includes strings specifying the scaling type for each objective
function value in methods that support scaling, when scaling is enabled (see Method Independent Controls for
details). Each entry in objective_function_scale_types may be selected from ’none’, ’value’,
or ’log’, to select no, characteristic value, or logarithmic scaling, respectively. Automatic scaling is not
available for objective functions. If a single string is specified it will apply to each objective function. Each entry
in objective_function_scales may be a user-specified nonzero characteristic value to be used in scaling

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.5 Function Specification 181

each objective function. These values are ignored for scaling type ’none’, required for ’value’, and optional
for ’log’. If a single real value is specified it will apply to each function. If the number of objective functions is
greater than 1, then a multi_objective_weights specification provides a simple weighted-sum approach
to combining multiple objectives:

f =
n∑

i=1

wifi

If this is not specified, then each objective function is given equal weighting:

f =
n∑

i=1

fi

n

If scaling is specified, it is applied before multi-objective weighted sums are formed.

The nonlinear_inequality_lower_bounds and nonlinear_inequality_upper_bounds
specifications provide the lower and upper bounds for 2-sided nonlinear inequalities of the form

gl ≤ g(x) ≤ gu

The defaults for the inequality constraint bounds are selected so that one-sided inequalities of the form

g(x) ≤ 0.0

result when there are no user constraint bounds specifications (this provides backwards compatibility with pre-
vious DAKOTA versions). In a user bounds specification, any upper bound values greater than +bigReal-
BoundSize (1.e+30, as defined in Minimizer) are treated as +infinity and any lower bound values less than
-bigRealBoundSize are treated as -infinity. This feature is commonly used to drop one of the bounds in
order to specify a 1-sided constraint (just as the default lower bounds drop out since -DBL_MAX < -big-
RealBoundSize). The same approach is used for nonexistent linear inequality bounds as described in Method
Independent Controls and for nonexistent design variable bounds as described in Design Variables.

The nonlinear_equality_targets specification provides the targets for nonlinear equalities of the form

g(x) = gt

and the defaults for the equality targets enforce a value of 0. for each constraint

g(x) = 0.0

The nonlinear_inequality_scale_types and nonlinear_equality_scale_types specifica-
tions include strings specifying the scaling type for each nonlinear inequality or equality constraint, respectively,
in methods that support scaling, when scaling is enabled (see Method Independent Controls for details). Each
entry in objective_function_scale_types may be selected from ’none’, ’value’, ’auto’, or
’log’, to select no, characteristic value, automatic, or logarithmic scaling, respectively. If a single string is
specified it will apply to all components of the relevant nonlinear constraint vector. Each entry in nonlinear_-
inequality_scales and nonlinear_equality_scales may be a user-specified nonzero characteris-
tic value to be used in scaling each constraint component. These values are ignored for scaling type ’none’,
required for ’value’, and optional for ’auto’ and ’log’. If a single real value is specified it will apply to
each constraint.

Any linear constraints present in an application need only be input to an optimizer at start up and do not need to be
part of the data returned on every function evaluation (see the linear constraints description in Method Independent
Controls). Table 9.3 summarizes the optimization data set specification.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

182 Responses Commands

Description Keyword Associated Data Status Default
Number of
objective functions

num_-
objective_-
functions

integer Required group N/A

Objective function
scaling types

objective_-
function_-
scale_types

list of strings Optional vector values =
’none’

Objective function
scales

objective_-
function_-
scales

list of reals Optional vector values = 1.
(no scaling)

Multiobjective
weightings

multi_-
objective_-
weights

list of reals Optional equal weightings

Number of
nonlinear
inequality
constraints

num_-
nonlinear_-
inequality_-
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Nonlinear
inequality
constraint scaling
types

nonlinear_-
inequality_-
scale_types

list of strings Optional vector values =
’none’

Nonlinear
inequality
constraint scales

nonlinear_-
inequality_-
scales

list of reals Optional vector values = 1.
(no scaling)

Number of
nonlinear equality
constraints

num_-
nonlinear_-
equality_-
constraints

integer Optional 0

Nonlinear equality
constraint targets

nonlinear_-
equality_-
targets

list of reals Optional vector values = 0.

Nonlinear equality
constraint scaling
types

nonlinear_-
equality_-
scale_types

list of strings Optional vector values =
’none’

Nonlinear equality
constraint scales

nonlinear_-
equality_-
scales

list of reals Optional vector values = 1.
(no scaling)

Table 9.3: Specification detail for optimization data sets

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.5 Function Specification 183

9.5.2 Least squares terms and constraint functions (least squares data set)

A least squares data set is specified using num_least_squares_terms and optionally least_squares_-
data_file least_squares_term_scales, least_squares_weights num_nonlinear_-
inequality_constraints, nonlinear_inequality_lower_bounds, nonlinear_-
inequality_upper_bounds, nonlinear_inequality_scales, num_nonlinear_-
equality_constraints, nonlinear_equality_targets, and nonlinear_equality_-
scales. Each of the least squares terms is a residual function to be driven toward zero, and the nonlinear
inequality and equality constraint specifications have identical meanings to those described in Objective and
constraint functions (optimization data set). These types of problems are commonly encountered in parameter
estimation, system identification, and model calibration. Least squares problems are most efficiently solved using
special-purpose least squares solvers such as Gauss-Newton or Levenberg-Marquardt; however, they may also be
solved using general-purpose optimization algorithms.

It is important to realize that, while DAKOTA can solve these problems with either least squares or optimization
algorithms, the response data sets to be returned from the simulator are different. Least squares involves a set of
residual functions whereas optimization involves a single objective function (sum of the squares of the residuals),
i.e.,

f =
n∑

i=1

(Ri)2

where f is the objective function and the set of Ri are the residual functions. Therefore, function values and
derivative data in the least squares case involve the values and derivatives of the residual functions, whereas the
optimization case involves values and derivatives of the sum of squares objective function. Switching between
the two approaches will likely require different simulation interfaces capable of returning the different granularity
of response data required. The specification least_squares_data_file may be used to specify a text file
containing num_least_squares_terms observed data values (one per line) to be used in computing the
residuals

Ri = yM
i − yO

i

where M denotes model and O, observation. In this case the simulator should return the actual model response,
as DAKOTA will compute the residual internally using the supplied data.

The least_squares_term_scale_types specification includes strings specifying the scaling type for
each least squares term in methods that support scaling, when scaling is enabled (see Method Independent Con-
trols for details). Each entry in least_squares_term_scale_types may be selected from ’none’,
’value’, or ’log’, to select no, characteristic value, or logarithmic scaling, respectively. Automatic scaling is
not available for least squares terms. If a single string is specified it will apply to each least squares terms. Each
entry in least_squares_term_scales may be a user-specified nonzero characteristic value to be used in
scaling each term. These values are ignored for scaling type ’none’, required for ’value’, and optional for
’log’. If a single real value is specified it will apply to each term. The least_squares_weights specifi-
cation provides a means to multiplicatively weight the vector of least squares residuals with a vector of weights.
If scaling is specified, it is applied before term weighting.

Table 9.4 summarizes the least squares data set specification.

9.5.3 Response functions (generic data set)

A generic response data set is specified using num_response_functions. Each of these functions is simply
a response quantity of interest with no special interpretation taken by the method in use. This type of data set is
used by uncertainty quantification methods, in which the effect of parameter uncertainty on response functions is

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

184 Responses Commands

Description Keyword Associated Data Status Default
Number of least
squares terms

num_least_-
squares_-
terms

integer Required N/A

Least squares data
source file

least_-
squares_-
data_file

string Optional none

Least squares term
scaling types

least_-
squares_-
term_scale_-
types

list of strings Optional vector values =
’none’

Least squares
terms scales

least_-
squares_-
term_scales

list of reals Optional no scaling (vector
values = 1.)

Least squares
terms weightings

least_-
squares_-
weights

list of reals Optional equal weightings

Number of
nonlinear
inequality
constraints

num_-
nonlinear_-
inequality_-
constraints

integer Optional 0

Nonlinear
inequality
constraint lower
bounds

nonlinear_-
inequality_-
lower_bounds

list of reals Optional vector values =
-DBL_MAX

Nonlinear
inequality
constraint upper
bounds

nonlinear_-
inequality_-
upper_bounds

list of reals Optional vector values = 0.

Nonlinear
inequality scaling
types

nonlinear_-
inequality_-
scale_types

list of strings Optional vector values =
’none’

Nonlinear
inequality
constraint scales

nonlinear_-
inequality_-
scales

list of reals Optional no scaling (vector
values = 1.)

Number of
nonlinear equality
constraints

num_-
nonlinear_-
equality_-
constraints

integer Optional 0

Nonlinear equality
constraint targets

nonlinear_-
equality_-
targets

list of reals Optional vector values = 0.

Nonlinear equality
scaling types

nonlinear_-
equality_-
scale_types

list of strings Optional vector values =
’none’

Nonlinear equality
constraint scales

nonlinear_-
equality_-
scales

list of reals Optional no scaling (vector
values = 1.)

Table 9.4: Specification detail for nonlinear least squares data sets

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.6 Gradient Specification 185

quantified, and can also be used in parameter study and design of experiments methods (although these methods
are not restricted to this data set), in which the effect of parameter variations on response functions is evaluated.
Whereas objective, constraint, and residual functions have special meanings for optimization and least squares
algorithms, the generic response function data set need not have a specific interpretation and the user is free
to define whatever functional form is convenient. Table 9.5 summarizes the generic response function data set
specification.

Description Keyword Associated Data Status Default
Number of
response functions

num_-
response_-
functions

integer Required N/A

Table 9.5: Specification detail for generic response function data sets

9.6 Gradient Specification

The gradient specification must be one of four types: 1) no gradients, 2) numerical gradients, 3) analytic gradients,
or 4) mixed gradients.

9.6.1 No gradients

The no_gradients specification means that gradient information is not needed in the study. Therefore, it will
neither be retrieved from the simulation nor computed with finite differences. The no_gradients keyword is
a complete specification for this case.

9.6.2 Numerical gradients

The numerical_gradients specification means that gradient information is needed and will be computed
with finite differences using either the native or one of the vendor finite differencing routines.

The method_source setting specifies the source of the finite differencing routine that will be used to compute
the numerical gradients: dakota denotes DAKOTA’s internal finite differencing algorithm and vendor denotes
the finite differencing algorithm supplied by the iterator package in use (DOT, CONMIN, NPSOL, NL2SOL,
NLSSOL, and OPT++ each have their own internal finite differencing routines). The dakota routine is the
default since it can execute in parallel and exploit the concurrency in finite difference evaluations (see Exploiting
Parallelism in the Users Manual [Adams et al., 2010]). However, the vendor setting can be desirable in some
cases since certain libraries will modify their algorithm when the finite differencing is performed internally. Since
the selection of the dakota routine hides the use of finite differencing from the optimizers (the optimizers
are configured to accept user-supplied gradients, which some algorithms assume to be of analytic accuracy),
the potential exists for the vendor setting to trigger the use of an algorithm more optimized for the higher
expense and/or lower accuracy of finite-differencing. For example, NPSOL uses gradients in its line search
when in user-supplied gradient mode (since it assumes they are inexpensive), but uses a value-based line search
procedure when internally finite differencing. The use of a value-based line search will often reduce total expense
in serial operations. However, in parallel operations, the use of gradients in the NPSOL line search (user-supplied
gradient mode) provides excellent load balancing without need to resort to speculative optimization approaches.
In summary, then, the dakota routine is preferred for parallel optimization, and the vendor routine may be
preferred for serial optimization in special cases.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

186 Responses Commands

The interval_type setting is used to select between forward and central differences in the numerical
gradient calculations. The dakota, DOT vendor, and OPT++ vendor routines have both forward and central
differences available, the CONMIN and NL2SOL vendor routines support forward differences only, and the
NPSOL and NLSSOL vendor routines start with forward differences and automatically switch to central differ-
ences as the iteration progresses (the user has no control over this). The following forward difference expression

∇f(x) ∼=
f(x + hei)− f(x)

h

and the following central difference expression

∇f(x) ∼=
f(x + hei)− f(x− hei)

2h

are used to estimate the ith component of the gradient vector.

Lastly, fd_gradient_step_size specifies the relative finite difference step size to be used in the computa-
tions. Either a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for
each parameter. The latter option of a list of step sizes is only valid for use with the DAKOTA finite differencing
routine. For DAKOTA, DOT, CONMIN, and OPT++, the differencing intervals are computed by multiplying the
fd_gradient_step_size with the current parameter value. In this case, a minimum absolute differencing
interval is needed when the current parameter value is close to zero. This prevents finite difference intervals for
the parameter which are too small to distinguish differences in the response quantities being computed. DAKOTA,
DOT, CONMIN, and OPT++ all use .01∗fd_gradient_step_size as their minimum absolute differencing
interval. With a fd_gradient_step_size = .001, for example, DAKOTA, DOT, CONMIN, and OPT++
will use intervals of .001∗current value with a minimum interval of 1.e-5. NPSOL and NLSSOL use a differ-
ent formula for their finite difference intervals: fd_gradient_step_size∗(1+|current parameter
value|). This definition has the advantage of eliminating the need for a minimum absolute differencing interval
since the interval no longer goes to zero as the current parameter value goes to zero.

When DAKOTA computes gradients or Hessians by finite differences and the variables in question have bounds,
by default DAKOTA 5.0 chooses finite-differencing steps that keep the variables within their specified bounds.
Older versions of DAKOTA generally ignored bounds when computing finite differences. To restore the older
behavior, one can add keyword ignore_bounds to the response specification when method_source
dakota (or just dakota) is also specified. In forward difference or backward difference computations, honoring
bounds is straightforward. To honor bounds when approximating ∂f/∂xi, i.e., component i of the gradient of f ,
by central differences, DAKOTA chooses two steps h1 and h2 with h1 6= h2, such that x + h1ei and x + h2ei

both satisfy the bounds, and then computes

∂f

∂xi

∼=
h2

2(f1 − f0)− h2
1(f2 − f0)

h1h2(h2 − h1)
,

with f0 = f(x), f1 = f(x + h1ei), and f2 = f(x + h2ei).

Table 9.6 summarizes the numerical gradient specification.

9.6.3 Analytic gradients

The analytic_gradients specification means that gradient information is available directly from the simu-
lation (finite differencing is not required). The simulation must return the gradient data in the DAKOTA format
(enclosed in single brackets; see DAKOTA File Data Formats in the Users Manual [Adams et al., 2010]) for the
case of file transfer of data. The analytic_gradients keyword is a complete specification for this case.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.6 Gradient Specification 187

Description Keyword Associated Data Status Default
Numerical
gradients

numerical_-
gradients

none Required group N/A

Method source method_-
source

dakota |
vendor

Optional group dakota

Interval type interval_-
type

forward |
central

Optional group forward

Finite difference
step size

fd_-
gradient_-
step_size

list of reals Optional 0.001

Ignore variable
bounds

ignore_bounds none Optional bounds respected

Table 9.6: Specification detail for numerical gradients

9.6.4 Mixed gradients

The mixed_gradients specification means that some gradient information is available directly from the sim-
ulation (analytic) whereas the rest will have to be finite differenced (numerical). This specification allows the
user to make use of as much analytic gradient information as is available and then finite difference for the rest.
For example, the objective function may be a simple analytic function of the design variables (e.g., weight)
whereas the constraints are nonlinear implicit functions of complex analyses (e.g., maximum stress). The id_-
analytic_gradients list specifies by number the functions which have analytic gradients, and the id_-
numerical_gradients list specifies by number the functions which must use numerical gradients. Each
function identifier, from 1 through the total number of functions, must appear once and only once within the
union of the id_analytic_gradients and id_numerical_gradients lists. The method_source,
interval_type, and fd_gradient_step_size specifications are as described previously in Numerical
gradients and pertain to those functions listed by the id_numerical_gradients list. Table 9.7 summarizes
the mixed gradient specification.

Description Keyword Associated Data Status Default
Mixed gradients mixed_-

gradients
none Required group N/A

Analytic
derivatives
function list

id_-
analytic_-
gradients

list of integers Required N/A

Numerical
derivatives
function list

id_-
numerical_-
gradients

list of integers Required N/A

Method source method_-
source

dakota |
vendor

Optional group dakota

Interval type interval_-
type

forward |
central

Optional group forward

Finite difference
step size

fd_step_size list of reals Optional 0.001

Ignore variable
bounds

ignore_-
bounds

none Optional bounds respected

Table 9.7: Specification detail for mixed gradients

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

188 Responses Commands

9.7 Hessian Specification

Hessian availability must be specified with either no_hessians, numerical_hessians, quasi_-
hessians, analytic_hessians, or mixed_hessians.

9.7.1 No Hessians

The no_hessians specification means that the method does not require DAKOTA to manage the computa-
tion of any Hessian information. Therefore, it will neither be retrieved from the simulation nor computed by
DAKOTA. The no_hessians keyword is a complete specification for this case. Note that, in some cases, Hes-
sian information may still be being approximated internal to an algorithm (e.g., within a quasi-Newton optimizer
such as optpp_q_newton); however, DAKOTA has no direct involvement in this process and the responses
specification need not include it.

9.7.2 Numerical Hessians

The numerical_hessians specification means that Hessian information is needed and will be computed
with finite differences using either first-order gradient differencing (for the cases of analytic_gradients
or for the functions identified by id_analytic_gradients in the case of mixed_gradients) or first-
or second-order function value differencing (all other gradient specifications). In the former case, the following
expression

∇2f(x)i
∼=
∇f(x + hei)−∇f(x)

h

estimates the ith Hessian column, and in the latter case, the following expressions

∇2f(x)i,j
∼=

f(x + hiei + hjej)− f(x + hiei)− f(x− hjej) + f(x)
hihj

and

∇2f(x)i,j
∼=

f(x + hei + hej)− f(x + hei − hej)− f(x− hei + hej) + f(x− hei − hej)
4h2

provide first- and second-order estimates of the ijth Hessian term. Prior to DAKOTA 5.0, DAKOTA always used
second-order estimates. Starting in DAKOTA 5.0, the default is to use first-order estimates (which honor bounds
on the variables and require only about a quarter as many function evaluations as do the second-order estimates),
but specifying central after numerical_hessians causes DAKOTA to use the old second-order estimates,
which do not honor bounds. In optimization algorithms that use Hessians, there is little reason to use second-order
differences in computing Hessian approximations.

The fd_hessian_step_size specifies the relative finite difference step size to be used in these differences.
Either a single value may be entered for use with all parameters, or a list of step sizes may be entered, one for
each parameter. The differencing intervals are computed by multiplying the fd_hessian_step_size with
the current parameter value. A minimum absolute differencing interval of .01∗fd_hessian_step_size is
used when the current parameter value is close to zero. Table 9.8 summarizes the numerical Hessian specification.

9.7.3 Quasi Hessians

The quasi_hessians specification means that Hessian information is needed and will be approximated using
secant updates (sometimes called “quasi-Newton updates", though any algorithm that approximates Newton’s

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

9.7 Hessian Specification 189

Description Keyword Associated Data Status Default
Numerical
Hessians

numerical_-
hessians

none Required group N/A

Finite difference
step size

fd_step_size list of reals Optional 0.001 (1st-order),
0.002
(2nd-order)

Difference order forward |
central

none Optional forward

Table 9.8: Specification detail for numerical Hessians

method is a quasi-Newton method). Compared to finite difference numerical Hessians, secant approximations
do not expend additional function evaluations in estimating all of the second-order information for every point
of interest. Rather, they accumulate approximate curvature information over time using the existing gradient
evaluations. The supported secant approximations include the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
(specified with the keyword bfgs)

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

and the Symmetric Rank 1 (SR1) update (specified with the keyword sr1)

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

where Bk is the kth approximation to the Hessian, sk = xk+1 − xk is the step and yk = ∇fk+1 − ∇fk is
the corresponding yield in the gradients. In both cases, an initial scaling of yT

k yk

yT
k

sk
I is used for B0 prior to the

first update. In addition, both cases employ basic numerical safeguarding to protect against numerically small
denominators within the updates. This safeguarding skips the update if |yT

k sk| < 10−6sT
k Bksk in the BFGS case

or if |(yk −Bksk)T sk| < 10−6||sk||2||yk −Bksk||2 in the SR1 case. In the BFGS case, additional safeguarding
can be added using the damped option, which utilizes an alternative damped BFGS update when the curvature
condition yT

k sk > 0 is nearly violated. Table 9.9 summarizes the quasi Hessian specification.

Description Keyword Associated Data Status Default
Quasi Hessians quasi_-

hessians
bfgs | sr1 Required group N/A

Numerical
safeguarding of
BFGS update

damped none Optional undamped BFGS

Table 9.9: Specification detail for quasi Hessians

9.7.4 Analytic Hessians

The analytic_hessians specification means that Hessian information is available directly from the simu-
lation. The simulation must return the Hessian data in the DAKOTA format (enclosed in double brackets; see
DAKOTA File Data Formats in Users Manual [Adams et al., 2010]) for the case of file transfer of data. The
analytic_hessians keyword is a complete specification for this case.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

190 Responses Commands

9.7.5 Mixed Hessians

The mixed_hessians specification means that some Hessian information is available directly from the simu-
lation (analytic) whereas the rest will have to be estimated by finite differences (numerical) or approximated by
secant updating. As for mixed gradients, this specification allows the user to make use of as much analytic infor-
mation as is available and then estimate/approximate the rest. The id_analytic_hessians list specifies by
number the functions which have analytic Hessians, and the id_numerical_hessians and id_quasi_-
hessians lists specify by number the functions which must use numerical Hessians and secant Hessian updates,
respectively. Each function identifier, from 1 through the total number of functions, must appear once and only
once within the union of the id_analytic_hessians, id_numerical_hessians, and id_quasi_-
hessians lists. The fd_hessian_step_size and bfgs, damped bfgs, or sr1 secant update selections
are as described previously in Numerical Hessians and Quasi Hessians and pertain to those functions listed by
the id_numerical_hessians and id_quasi_hessians lists. Table 9.10 summarizes the mixed Hessian
specification.

Description Keyword Associated Data Status Default
Mixed Hessians mixed_-

hessians
none Required group N/A

Analytic Hessians
function list

id_-
analytic_-
hessians

list of integers Required N/A

Numerical
Hessians function
list

id_-
numerical_-
hessians

list of integers Required N/A

Finite difference
step size

fd_step_size list of reals Optional 0.001 (1st-order),
0.002
(2nd-order)

Quasi Hessians
function list

id_quasi_-
hessians

list of integers Required N/A

Quasi-Hessian
update

bfgs | sr1 none Required N/A

Numerical
safeguarding of
BFGS update

damped none Optional undamped BFGS

Table 9.10: Specification detail for mixed Hessians

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

Chapter 10

Bibliography

• Anderson, G., and Anderson, P., 1986 The UNIX C Shell Field Guide, Prentice-Hall, Englewood Cliffs, NJ.

• Argaez, M., Tapia, R. A., and Velazquez, L., 2002. "Numerical Comparisons of Path-Following Strategies
for a Primal-Dual Interior-Point Method for Nonlinear Programming", Journal of Optimization Theory and
Applications, Vol. 114 (2).

• Breitung, K., 1984. "Asymptotic approximation for multinormal integrals," J. Eng. Mech., ASCE, Vol. 110,
No. 3, pp. 357-366.

• Byrd, R. H., Schnabel, R. B., and Schultz, G. A., 1988. "Parallel quasi-Newton Methods for Unconstrained
Optimization," Mathematical Programming, 42(1988), pp. 273-306.

• Conn, A.∼R. and Gould, N.∼I.∼M. and Toint, P.∼L., 2000. Trust-Region Methods, SIAM-MPS, Philadel-
phia.

• Du,Q., V. Faber, and M. Gunzburger, 1999. "Centroidal Voronoi Tessellations: Applications and Algo-
rithms," SIAM Review, Volume 41, 1999, pages 637-676.

• Eddy, J. E. and Lewis, K., 2001. "Effective Generation of Pareto Sets using Genetic Programming," Pro-
ceedings of ASME Design Engineering Technical Conference.

• El-Bakry, A. S., Tapia, R. A., Tsuchiya, T., and Zhang, Y., 1996. "On the Formulation and Theory of the
Newton Interior-Point Method for Nonlinear Programming," Journal of Optimization Theory and Applica-
tions, (89) pp. 507-541.

• Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and McFarland, J.M., 2007. "Multimodal Re-
liability Assessment for Complex Engineering Applications using Efficient Global Optimization," paper
AIAA-2007-1946 in Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference (9th AIAA Non-Deterministic Approaches Conference), Honolulu, HI, April
23-26.

192 Bibliography

• Eldred, M.S. and Swiler, L.P., 2009. "Efficient Algorithms for Mixed Aleatory-Epistemic Uncertainty
Quantification with Application to Radiation-Hardened Electronics. Part 1: Algorithms and Benchmark
Results," Sandia Technical report SAND2009-5805.

• Eldred, M.S. and Dunlavy, D.M., 2006. "Formulations for Surrogate-Based Optimization with Data
Fit, Multifidelity, and Reduced-Order Models," paper AIAA-2006-7117 in the Proceedings of the 11th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, Sept. 6-8.

• Eldred, M.S. and Bichon, B.J., 2006. "Second-Order Reliability Formulations in DAKOTA/UQ," paper
AIAA-2006-1828 in Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference (8th AIAA Non-Deterministic Approaches Conference), Newport, Rhode
Island, May 1 - 4.

• Adams, B.∼M., Bohnhoff, W.∼J., Dalbey, K.∼R., Eddy, J.∼P., Eldred, M.∼S., Gay, D.∼M., Haskell, K.,
Hough, P.∼D., and Swiler, L.∼P., 2010. "DAKOTA: A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis. Version
5.0 Users Manual," Sandia Technical Report SAND2010-2183, 2010.

• Eldred, M. S., Giunta, A. A., and Collis, S. S., 2004. "Second-Order Corrections for Surrogate-Based
Optimization with Model Hierarchies," Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Albany, NY, Aug. 30 - Sept. 1.

• Eldred, M.S., Agarwal, H., Perez, V.M., Wojtkiewicz, S.F., Jr., and Renaud, J.E., 2004. "Investigation of
Reliability Method Formulations in DAKOTA/UQ," Proceedings of the 9th ASCE Joint Specialty Confer-
ence on Probabilistic Mechanics and Structural Reliability, Albuquerque, NM, July 26-28.

• Gablonsky, J., 2001. "DIRECT version 2.0 Userguide Technical Report CRSC-TR01-08", Center for Re-
search in Scientific Computation, North Carolina State University, Raleigh, NC.

• Fourer, R., Gay, D. M., and Kernighan, B. W., 2003. "AMPL: A Modeling Language for Mathematical
Programming," Duxbury Press/Brooks/Cole Publishing Co. 2nd ed.

• Gay, D. M., 1997. "Hooking Your Solver to AMPL," Technical Report 97-4-06, Bell Laboratories, Murray
Hill, NJ. Available as http://www.ampl.com/REFS/hooking2.ps.gz .

• Gay, David M., 2008. "Specifying and Reading Program Input with NIDR", Sandia Technical Report
SAND2008-2261P. Available as http://www.sandia.gov/∼dmgay/nidr08.pdf .

• Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., 1986. "User’s Guide for NPSOL (Version
4.0): A Fortran Package for Nonlinear Programming," System Optimization Laboratory Technical Report
SOL-86-2, Stanford University, Stanford, CA.

• Gunburger, M. and J. Burkardt, 2004. "Uniformity Measures for Point Samples in Hypercubes." Available
on John Burkardt’s web site: http://www.csit.fsu.edu/∼burkardt/

• Haftka, R. T., 1991. "Combining Global and Local Approximations," AIAA Journal, Vol. 29, No. 9, pp.
1523-1525.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://www.ampl.com/REFS/hooking2.ps.gz
http://www.sandia.gov/~dmgay/nidr08.pdf
http://www.csit.fsu.edu/~burkardt/

193

• Haldar, A., and Mahadevan, S., 2000. Probability, Reliability, and Statistical Methods in Engineering
Design, John Wiley and Sons, New York.

• Halton, J. H. "On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional
integrals, Numerische Mathematik,Volume 2 pages 84-90.

• Halton, J. H. and G. B. Smith, 1964. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence,
Communications of the ACM, Volume 7, pages 701-702.

• Hart, W. E., Giunta, A. A., Salinger, A. G., and van Bloemen Waanders, B. G., 2001. "An Overview of the
Adaptive Pattern Search Algorithm and its Application to Engineering Optimization Problems," abstract in
Proceedings of the McMaster Optimization Conference: Theory and Applications, McMaster University,
Hamilton, Ontario, Canada.

• Hart, W. E., and Hunter, K. O., 1999. "A Performance Analysis of Evolutionary Pattern Search with
Generalized Mutation Steps," Proc Conf Evolutionary Computation, pp. 672-679.

• Helton, J.C. and W.L. Oberkampf, 2004. Special Issue of Reliability Engineering and System Safety: Issue
on Alternative Representations of Epistemic Uncertainty. Vol 85, Nos. 1-3, July-Sept. 2004.

• Hohenbichler, M. and Rackwitz, R. "Improvement of second-order reliability estimates by importance sam-
pling," ASCE Journal of Engineering Mechanics, Vol. 114, No. 12, 1988, pp. 2195-2199.

• Hong, H.P. "Simple Approximations for Improving Second-Order Reliability Estimates," ASCE Journal of
Engineering Mechanics, Vol. 125, No. 5, 1999, pp. 592-595.

• Gray, G. A. and Kolda, T. G., 2006. "Algorithm 856: APPSPACK 4.0: Asynchronous Parallel Pattern
Search for Derivative-Free Optimization," ACM Transactions on Mathematical Software, Vol. 32, No. 3,
pp. 485-507.

• Iman, R. L., and Conover, W. J., 1982. "A Distribution-Free Approach to Inducing Rank Correlation
Among Input Variables," Communications in Statistics: Simulation and Computation, Vol. B11, no. 3, pp.
311-334.

• Jones, D., Schonlau, M., and W. Welch, 1998. "Efficient Global Optimization of Expensive Black-Box
Functions," Journal of Global Optimization, Vol. 13, pp. 455-492.

• Kocis, L. and W. Whiten, 1997. "Computational Investigations of Low-Discrepancy Sequences," ACM
Transactions on Mathematical Software, Volume 23, Number 2, 1997, pages 266-294.

• Lewis, R. M., and Nash, S. G., 2000. "A Multigrid Approach to the Optimization of Systems Governed
by Differential Equations," paper AIAA-2000-4890 in Proceedings of the 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, Sept. 6-8.

• Meza, J. C., Oliva, R. A., Hough, P. D., and Williams, P. J., 2007. "OPT++: An Object-Oriented Toolkit for
Nonlinear Optimization," ACM Transactions on Mathematical Software 33(2).

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

194 Bibliography

• More, J., and Thuente, D., 1994. "Line Search Algorithms with Guaranteed Sufficient Decrease," ACM
Transactions on Mathematical Software 20(3):286-307.

• Morris, M. D., "Factorial Sampling Plans for Preliminary Computational Experiments," Technometrics
33(2): 161-174.

• Oberkampf, W.L. and J.C. Helton, 2003. "Evidence Theory for Engineering Applications." Sandia National
Laboratories Technical Report SAND2003-3559P.

• Perez, V. M., J. E. Renaud, L. T. Watson, 2004. "An Interior-Point Sequetial Approximation Optimization
Methodology", Structural and Multidisciplinary Optimization, 27(5):360-370.

• Robinson, D.G. and C. Atcitty, 1999. "Comparison of Quasi- and Pseudo-Monte Carlo Sampling for Re-
liability and Uncertainty Analysis." Proceedings of the AIAA Probabilistic Methods Conference, St. Louis
MO, AIAA99-1589.

• Saltelli, A., S. Tarantola, F. Campolongo, and M. Ratto, 2004. "Sensitivity Analysis in Practice: A Guide
to Assessing Scientific Models." John Wiley & Sons.

• Schittkowski, K., 2004. "NLPQLP: A Fortran Implementation of a Sequential Quadratic Programming
Algorithm with Distributed and Non-Monotone Line Search – User’s Guide," Technical Report, Department
of Mathematics, University of Bayreuth, Bayreuth, Germany.

• Sjaardema, G. D., 1992. "APREPRO: An Algebraic Preprocessor for Parameterizing Finite Element Anal-
yses," Sandia National Laboratories Technical Report SAND92-2291, Albuquerque, NM.

• Tapia, R. A., and Argaez, M., "Global Convergence of a Primal-Dual Interior-Point Newton Method for
Nonlinear Programming Using a Modified Augmented Lagrangian Function". (In Preparation).

• Tong, C. H., 2005. "The PSUADE Software Library." Lawrence Livermore National Laborato-
ries UCRL UCRL-WEB-211742. Web site: http://www.llnl.gov/CASC/uncertainty_-
quantification/#psuade.

• Vanderbei, R. J., and Shanno, D. F., 1999. "An interior-point algorithm for nonconvex nonlinear program-
ming", Computational Optimization and Applications, 13:231-259.

• Vanderplaats, G. N., 1973. "CONMIN - A FORTRAN Program for Constrained Function Minimization,"
NASA TM X-62282. (see also: Addendum to Technical Memorandum, 1978).

• Vanderplaats Research and Development, Inc., 1995. "DOT Users Manual, Version 4.20," Colorado
Springs.

• Wright, S. J., 1997. "Primal-Dual Interior-Point Methods", SIAM.

• Wyss, G. D., and Jorgensen, K. H., 1998. "A User s Guide to LHS: Sandia’s Latin Hypercube Sampling
Software," Sandia National Laboratories Technical Report SAND98-0210, Albuquerque, NM.

• Xu, S. and Grandhi, R. V., 1998. "Effective Two-Point Function Approximation for Design Optimization,"
AIAA Journal, Vol. 36, No. 12, December 1998.

DAKOTA Version 5.0 Reference Manual generated on May 7, 2010

http://www.llnl.gov/CASC/uncertainty_quantification/#psuade.
http://www.llnl.gov/CASC/uncertainty_quantification/#psuade.

	DAKOTA Reference Manual
	Overview
	Input Specification Reference
	Additional Resources

	DAKOTA File Documentation
	dakota.input.summary File Reference

	Introduction
	Overview
	NIDR Input Specification File
	Common Specification Mistakes
	Sample dakota.in Files
	Tabular descriptions

	Strategy Commands
	Strategy Description
	Strategy Specification
	Strategy Independent Controls
	Hybrid Minimization Commands
	Multistart Iteration Commands
	Pareto Set Optimization Commands
	Single Method Commands

	Method Commands
	Method Description
	Method Specification
	Method Independent Controls
	Optimization Methods
	Least Squares Methods
	Surrogate-Based Minimization Methods
	Uncertainty Quantification Methods
	Design of Computer Experiments Methods
	Parameter Study Methods

	Model Commands
	Model Description
	Model Specification
	Model Independent Controls
	Single Model Controls
	Surrogate Model Controls
	Nested Model Controls

	Variables Commands
	Variables Description
	Variables Specification
	Variables Set Identifier
	Design Variables
	Aleatory Uncertain Variables
	Epistemic Uncertain Variables
	State Variables

	Interface Commands
	Interface Description
	Interface Specification
	Interface Independent Controls
	Algebraic mappings
	Simulation interfaces

	Responses Commands
	Responses Description
	Responses Specification
	Responses Set Identifier
	Response Labels
	Function Specification
	Gradient Specification
	Hessian Specification

	Bibliography

